首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alexeev  Igor I. 《Space Science Reviews》2003,107(1-2):141-148
Three ways of the energy transfer in the Earth's magnetosphere are studied. The solar wind MHD generator is an unique energy source for all magnetospheric processes. Field-aligned currents directly transport the energy and momentum of the solar wind plasma to the Earth's ionosphere. The magnetospheric lobe and plasma sheet convection generated by the solar wind is another magnetospheric energy source. Plasma sheet particles and cold ionospheric polar wind ions are accelerated by convection electric field. After energetic particle precipitation into the upper atmosphere the solar wind energy is transferred into the ionosphere and atmosphere. This way of the energy transfer can include the tail lobe magnetic field energy storage connected with the increase of the tail current during the southward IMF. After that the magnetospheric substorm occurs. The model calculations of the magnetospheric energy give possibility to determine the ground state of the magnetosphere, and to calculate relative contributions of the tail current, ring current and field-aligned currents to the magnetospheric energy. The magnetospheric substorms and storms manifest that the permanent solar wind energy transfer ways are not enough for the covering of the solar wind energy input into the magnetosphere. Nonlinear explosive processes are necessary for the energy transmission into the ionosphere and atmosphere. For understanding a relation between substorm and storm it is necessary to take into account that they are the concurrent energy transferring ways. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Basic mechanisms of the hydrodynamic shock wave formation in the solar atmosphere during flares are considered. Hydrodynamic plasma flows during flares arise due to fast energy release which is accumulated in the magnetic field of currents in the solar atmosphere. Shock waves arise as a result of rapid heating of the chromospheric upper layers from accelerated particles or heat fluxes. Powerful hydrodynamic phenomena can also arise due to explosive current sheet disruption in the region of strong magnetic field reconnection. Fundamental questions of shock wave formation and propagation in a non-homogeneous emitting solar atmosphere are discussed.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

3.
In this paper a discussion is given of the present state of the theory of the heating of the solar corona by shock waves. Arguments are presented why the main contribution to the mechanical energy flux is of acoustic origin, while estimates for the amount of acoustic energy generated in the convection zone as well as the deviations from isotropy are given. During propagation through the atmosphere acoustic waves develop into shock waves after a distance of a few scale heights in the chromosphere. The heating of the outer layers by dissipation of shock waves is found to be sufficient to account for the observed radiative and corpuscular energy losses.Much emphasis is laid on the competitive role played by the four fundamental processes of energy transfer: mechanical heating, radiation, heat conduction and convection of energy in establishing the equilibrium structure of the corona. The atmosphere may be divided in several regions according to the predominance of one of the energy processes mentioned above.The physical properties of the chromosphere and the solar wind are discussed only where they are intimately connected with the problem of the heating of the corona.The most important aspects of the influence of a magnetic field on the structure and the heating of the corona in magnetically active regions are briefly mentioned. Special attention is paid to the strong channelling of heat flow along the field lines and its consequences for the structure and dynamics of the chromosphere-corona transition layer.  相似文献   

4.
This work addresses the observational and physical effects of particle beams in the solar atmosphere. Mainly electron beams are considered, but also some effects of proton and neutral beams are mentioned. Briefly describing acceleration mechanisms of superthermal particles, the main attention is devoted to effects influencing the particle beam propagation. The collisional energy losses and pitch-angle scattering, return current effects, mirroring in the converging magnetic field, and the scattering in the Alfvén and whistler wave turbulence in specific situations are considered. The role of quasi-linear relaxation is discussed. Examples of observations showing effects of particle beams in the solar atmosphere are presented throughout the paper. Separate chapters are devoted to processes connected with particle beam bombardment of dense layers of the solar atmosphere: hard X-ray and -ray flare emissions, evaporation process, asymmetry of optical chromospheric lines, and impact linear H line polarization. The beam induced energy release processes are also included. The presented effects of particle beams are summarized in the conclusions and future prospects are suggested.  相似文献   

5.
6.
A review of the theoretical problems associated with preflare magnetic energy storage and conversion is presented. The review consists of three parts; preflare magnetic energy storage, magnetic energy conversion mechanisms, and preflare triggers. In Section 2, the relationship between magnetic energy storage and the electrodynamic coupling of the solar atmosphere is developed. By accounting for the electrodynamic coupling of the solar atmosphere, we are able to examine the fundamental problems associated with the concept of in situ versus remote magnetic-energy storage. Furthermore, this approach permits us to distinguish between the roles of local and global parameters in the storage process.Section 3 is focused on the conversion mechanisms that can explain, in principle, the rapid energy release of a flare. In addition, we discuss how electrodynamic coupling eventually dictates which mechanism(s) is responsible for releasing the stored magnetic energy, and how the global coupling dictates the final evolution of the relevant mechanism. Section 4 examines preflare triggers and Section 5, we examine the most promising directions for future research into the problem of magnetic-energy storage and conversion of the Sun.  相似文献   

7.
From magnetic fields and coronal heating observed in flares, active regions, quiet regions, and coronal holes, we propose that exploding sheared core magnetic fields are the drivers of most of the dynamics and heating of the solar atmosphere, ranging from the largest and most powerful coronal mass ejections and flares, to the vigorous microflaring and coronal heating in active regions, to a multitude of fine-scale explosive events in the magnetic network, driving microflares, spicules, global coronal heating, and, consequently, the solar wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Flare phenomena in the solar atmosphere and in the terrestrial magnetosphere exhibit many similarities. The mechanical energy of enhanced photospheric motion is converted and stored in the form of magnetic potential energy in sunspot fields, which is analogous to the case of the growth phase of magnetospheric substorms. The energy release during the explosive phase is initiated by a sudden collapse in the magnetic field topology and the X-type magnetic neutral point is created in the corona. Subsequent electrical discharge takes place in the form of an intense electrojet current flowing in the base of the chromosphere at the altitude where the Cowling conductivity is a maximum. It is suggested that the acceleration of particles by field-aligned electric fields and the Ohmic heating in the chromosphere result in major features of solar flares.This article also appears inSolar Physics 40 (1975) 217–226. By way of exception this paper is reproduced here for the sake of completeness.  相似文献   

9.
It is shown that solar flares and magnetospheric substorms must primarily be caused by a dynamo process, rather than magnetic reconnection – a spontaneous, explosive annihilation of magnetic energy stored prior to the onset. Magnetic energy in the vicinity of solar flares and in the magnetotail shows often an increase at their onset, not a decrease. It is unfortunate that many observed features of solar flares and substorms have tacitly been ascribed to unproven (3-D) characteristics of the neutral line for a long time. In the future, it is necessary to study carefully their driving process and examine how the driven magnetic field system evolves, leading to solar flares and substorms.  相似文献   

10.
Coronal loops, which trace closed magnetic field lines, are the primary structural elements of the solar atmosphere. Complex dynamics of solar coronal magnetic loops, together with action of possible subphotospheric dynamo mechanisms, turn the majority of the coronal loops into current-carrying structures. In that connection none of the loops can be considered as isolated from the surroundings. The current-carrying loops moving relative to each other interact via the magnetic field and currents. One of the ways to take into account this interaction consists in application of the equivalent electric circuit models of coronal loops. According to these models, each loop is considered as an equivalent electric LCR-circuit with variable inductive coefficients L, capacitance C, and resistance R, which depend on shape, scale, position of the loop with respect to neighbouring loops, as well as on the plasma parameters in the magnetic tube. Such an approach enables to describe the process of electric current dynamics in the groups of coronal loops, as well as the related dynamical, energy release and radiation processes. In the present paper we describe the major principles of LCR-circuit models of coronal magnetic loops, and show their application for interpretation of the observed oscillatory phenomena in the loops and in the related radiation.  相似文献   

11.
The space-based observatories SOHO and TRACE have shown some very interesting results on the structure and dynamics of the Sun and its atmosphere, e.g., the extremely high ion temperatures or the enormous variability in the corona. But one question is still open to debate: how to use these data to distinguish between different types of physical heating processes, as, e.g., absorption of high-frequency Alfvén-waves or reconnection events? This paper will discuss some possibilities on how to tackle this type of question. These include observations of ion temperature anisotropies and electron temperatures in the corona as well as measurements of coronal magnetic fields. Emphasis will be put on simultaneous observations of the whole solar atmosphere from the photosphere into the solar wind and on solar-stellar connections. In the light of these ideas new proposed space missions as well as ground based efforts will be discussed.  相似文献   

12.
The solar wind at Mars interacts with the extended atmosphere and small-scale crustal magnetic fields. This interaction shares elements with a variety of solar system bodies, and has direct bearing on studies of the long-term evolution of the Martian atmosphere, the structure of the upper atmosphere, and fundamental plasma processes. The magnetometer (MAG) and electron reflectometer (ER) on Mars Global Surveyor (MGS) continue to make many contributions toward understanding the plasma environment, thanks in large part to a spacecraft orbit that had low periapsis, had good coverage of the interaction region, and has been long-lived in its mapping orbit. The crustal magnetic fields discovered using MGS data perturb plasma boundaries on timescales associated with Mars' rotation and enable a complex magnetic field topology near the planet. Every portion of the plasma environment has been sampled by MGS, confirming previous measurements and making new discoveries in each region. The entire system is highly variable, and responds to changes in solar EUV flux, upstream pressure, IMF direction, and the orientation of Mars with respect to the Sun and solar wind flow. New insights from MGS should come from future analysis of new and existing data, as well as multi-spacecraft observations.  相似文献   

13.
The optical observations and analyses of the flares of August 1972 are reviewed with emphasis on their dynamics. In particular, various assessments are made of possible quantitative interpretation of observed data. Specific topics considered are the storage and release of magnetic energy, triggering mechanisms, particle acceleration and magnetic field reconnection, and coronal and solar wind responses. Supplemental discussions on possible future direction of research are presented, illustrating the need for examination of the storage and release of flare energy in the lower solar atmosphere.On leave from the High Altitude Observatory.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

14.
The Near-Earth Plasma Environment   总被引:1,自引:0,他引:1  
An overview of the plasma environment near the earth is provided. We describe how the near-earth plasma is formed, including photo-ionization from solar photons and impact ionization at high latitudes from energetic particles. We review the fundamental characteristics of the earth’s plasma environment, with emphasis on the ionosphere and its interactions with the extended neutral atmosphere. Important processes that control ionospheric physics at low, middle, and high latitudes are discussed. The general dynamics and morphology of the ionized gas at mid- and low-latitudes are described including electrodynamic contributions from wind-driven dynamos, tides, and planetary-scale waves. The unique properties of the near-earth plasma and its associated currents at high latitudes are shown to depend on precipitating auroral charged particles and strong electric fields which map earthward from the magnetosphere. The upper atmosphere is shown to have profound effects on the transfer of energy and momentum between the high-latitude plasma and the neutral constituents. The article concludes with a discussion of how the near-earth plasma responds to magnetic storms associated with solar disturbances.  相似文献   

15.
In this paper a review is presented of the present status of our knowledge of solar flare phenomena with special emphasis on the production of suprathermal particles and their solar effects. Of these energetic particles electrons play an important role since they produce the X-ray and radiobursts observed during many flares. Also, during their slowing down to thermal energies they contribute to the heating of localized regions in the solar atmosphere, through energy exchange with the ambient electrons. Observable radiations of energetic protons, and other nuclei, are produced through nuclear interactions leading to the emissions of gamma-ray lines. Detectable fluxes of these gamma-ray lines are produced only in the most powerful flares. Also the nuclei that enter into deeper layers of the solar atmosphere transfer most of their kinetic energy to the ambient plasma.  相似文献   

16.
The atmosphere of the Sun is characterized by a complex interplay of competing physical processes: convection, radiation, conduction, and magnetic fields. The most obvious imprint of the solar convection and its overshooting in the low atmosphere is the granulation pattern. Beside this dominating scale there is a more or less smooth distribution of spatial scales, both towards smaller and larger scales, making the Sun essentially a multi-scale object. Convection and overshooting give the photosphere its face but also act as drivers for the layers above, namely the chromosphere and corona. The magnetic field configuration effectively couples the atmospheric layers on a multitude of spatial scales, for instance in the form of loops that are anchored in the convection zone and continue through the atmosphere up into the chromosphere and corona. The magnetic field is also an important structuring agent for the small, granulation-size scales, although (hydrodynamic) shock waves also play an important role—especially in the internetwork atmosphere where mostly weak fields prevail. Based on recent results from observations and numerical simulations, we attempt to present a comprehensive picture of the atmosphere of the quiet Sun as a highly intermittent and dynamic system.  相似文献   

17.
The solar wind and the solar XUV/EUV radiation constitute a permanent forcing of the upper atmosphere of the planets in our solar system, thereby affecting the habitability and chances for life to emerge on a planet. The forcing is essentially inversely proportional to the square of the distance to the Sun and, therefore, is most important for the innermost planets in our solar system—the Earth-like planets. The effect of these two forcing terms is to ionize, heat, chemically modify, and slowly erode the upper atmosphere throughout the lifetime of a planet. The closer to the Sun, the more efficient are these process. Atmospheric erosion is due to thermal and non-thermal escape. Gravity constitutes the major protection mechanism for thermal escape, while the non-thermal escape caused by the ionizing X-rays and EUV radiation and the solar wind require other means of protection. Ionospheric plasma energization and ion pickup represent two categories of non-thermal escape processes that may bring matter up to high velocities, well beyond escape velocity. These energization processes have now been studied by a number of plasma instruments orbiting Earth, Mars, and Venus for decades. Plasma measurement results therefore constitute the most useful empirical data basis for the subject under discussion. This does not imply that ionospheric plasma energization and ion pickup are the main processes for the atmospheric escape, but they remain processes that can be most easily tested against empirical data. Shielding the upper atmosphere of a planet against solar XUV, EUV, and solar wind forcing requires strong gravity and a strong intrinsic dipole magnetic field. For instance, the strong dipole magnetic field of the Earth provides a “magnetic umbrella”, fending of the solar wind at a distance of 10 Earth radii. Conversely, the lack of a strong intrinsic magnetic field at Mars and Venus means that the solar wind has more direct access to their topside atmosphere, the reason that Mars and Venus, planets lacking strong intrinsic magnetic fields, have so much less water than the Earth? Climatologic and atmospheric loss process over evolutionary timescales of planetary atmospheres can only be understood if one considers the fact that the radiation and plasma environment of the Sun has changed substantially with time. Standard stellar evolutionary models indicate that the Sun after its arrival at the Zero-Age Main Sequence (ZAMS) 4.5 Gyr ago had a total luminosity of ≈70% of the present Sun. This should have led to a much cooler Earth in the past, while geological and fossil evidence indicate otherwise. In addition, observations by various satellites and studies of solar proxies (Sun-like stars with different age) indicate that the young Sun was rotating more than 10 times its present rate and had correspondingly strong dynamo-driven high-energy emissions which resulted in strong X-ray and extreme ultraviolet (XUV) emissions, up to several 100 times stronger than the present Sun. Further, evidence of a much denser early solar wind and the mass loss rate of the young Sun can be determined from collision of ionized stellar winds of the solar proxies, with the partially ionized gas in the interstellar medium. Empirical correlations of stellar mass loss rates with X-ray surface flux values allows one to estimate the solar wind mass flux at earlier times, when the solar wind may have been more than 1000 times more massive. The main conclusions drawn on basis of the Sun-in-time-, and a time-dependent model of plasma energization/escape is that:
  1. Solar forcing is effective in removing volatiles, primarily water, from planets,
  2. planets orbiting close to the early Sun were subject to a heavy loss of water, the effect being most profound for Venus and Mars, and
  3. a persistent planetary magnetic field, like the Earth’s dipole field, provides a shield against solar wind scavenging.
  相似文献   

18.
The term “ultraviolet (UV) burst” is introduced to describe small, intense, transient brightenings in ultraviolet images of solar active regions. We inventorize their properties and provide a definition based on image sequences in transition-region lines. Coronal signatures are rare, and most bursts are associated with small-scale, canceling opposite-polarity fields in the photosphere that occur in emerging flux regions, moving magnetic features in sunspot moats, and sunspot light bridges. We also compare UV bursts with similar transition-region phenomena found previously in solar ultraviolet spectrometry and with similar phenomena at optical wavelengths, in particular Ellerman bombs. Akin to the latter, UV bursts are probably small-scale magnetic reconnection events occurring in the low atmosphere, at photospheric and/or chromospheric heights. Their intense emission in lines with optically thin formation gives unique diagnostic opportunities for studying the physics of magnetic reconnection in the low solar atmosphere. This paper is a review report from an International Space Science Institute team that met in 2016–2017.  相似文献   

19.
20.
In light of assessing the habitability of Mars, we examine the impact of the magnetic field on the atmosphere. When there is a magnetic field, the atmosphere is protected from erosion by solar wind. The magnetic field ensures the maintenance of a dense atmosphere, necessary for liquid water to exist on the surface of Mars. We also examine the impact of the rotation of Mars on the magnetic field. When the magnetic field of Mars ceased to exist (about 4 Gyr ago), atmospheric escape induced by solar wind began. We consider scenarios which could ultimately lead to a decrease of atmospheric pressure to the presently observed value of 7 mbar: a much weaker early martian magnetic field, a late onset of the dynamo, and high erosion rates of a denser early atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号