首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 234 毫秒
1.
实际发动机涡轮盘腔结构中的冷气进入叶片的冷却通道被简化为旋转盘上离散的通孔,冷气从静盘的中心流入,然后从这些通孔和转静盘间隙流出.针对这样的转静系统进行换热实验,得到了旋转盘表面的平均换热系数和转盘上通孔内平均换热系数.分析了转速、冷却气体流量对换热特性的影响,并给出了无量纲经验关系式.结果显示进气流量系数和旋转雷诺数的增加将导致盘面平均努塞尔数和通孔内表面的平均努塞尔数的增加.   相似文献   

2.
高位垂直进气旋转盘非稳态换热的实验研究   总被引:2,自引:0,他引:2  
用实验的方法对高位垂直进气的转静系旋转盘在非稳态情况下的流动与换热特性进行了研究,主要研究了冷气流量系数和旋转雷诺数的变化对盘面温度和平均努塞尔数的影响.结果发现:冷气流量的改变对盘面的换热影响非常明显,盘面各点温度随时间的变化率是相同的;旋转雷诺数增加使盘面平均努塞尔数增大,旋转雷诺数变化的方式导致盘缘区域温度随时间的变化率与中心区域的不同.   相似文献   

3.
针对航空发动机多级压气机盘腔的冷却问题,对具有轴向通流的三腔模型进行了系统的研究,通过对局部换热特性与平均换热特性的分析,可以表征旋转盘的热应力水平和相对冷却效果,结果表明表征旋转盘热应力水平的局部换热特性在旋转盘的半径上呈多峰分布,表征相对冷却效果的平均换热特性与旋转雷诺数Rew、进气雷诺数Re以及格拉晓夫数Gr有关,当Re及Gr增加时,平均努塞尔数 u随之增加,而Rew的增加使之减小.   相似文献   

4.
中心进气复杂旋转盘压力特性的实验研究   总被引:1,自引:0,他引:1  
中心进气具有两个出口的旋转盘系统中静盘表面沿半径方向的静压分布由实验方法获得.针对转速、冷却气体流量以及叶片冷却孔的存在与否对腔内流动特性的影响进行了分析.结果表明:在本实验范围内,静盘表面静压沿半径方向先减小,后增大.静盘表面静压随着总流量的增加而增加,随转速增加而降低.当减少盘面出流孔的数量时,静盘表面静压将会增加.当冷却气体流量较大时,盘腔内不能形成明显的旋转核心.  相似文献   

5.
带肋变截面回转通道内流动与换热的数值模拟   总被引:2,自引:0,他引:2  
开发了三维流动换热的通用计算程序,数值研究了带肋变截面回转通道内流动与换热的特性.湍流模型采用低雷诺数k-ε模型.通道肋间距为25mm,肋高分别为1mm,1.5mm,2mm,冷气进口雷诺数Re分别为7500,12500,18500,25000.计算结果表明:①通道的平均努赛尔数均随进口雷诺数的增大而增大;②对于Re=7500和12500,肋高越高,换热越强;对于Re=18500和25000,肋高为1.5mm的通道换热最强;③局部雷诺数的不同和离心力的影响导致通道内各区域的局部换热随肋高的变化趋势并不一致;在进口段,肋高越高,换热越强;在出口段,当Re=7500和12500时,肋高越高,换热越强,而当Re=18500和25000时,存在最佳肋高1.5mm.  相似文献   

6.
曲率对旋转态气膜冷却效率影响的数值模拟   总被引:1,自引:0,他引:1  
通过对旋转状态下曲率叶片模型上气膜冷却现象的流动和换热进行数值模拟,得到了不同主流雷诺数、吹风比和旋转数情况下吸力面和压力面上的冷却效率分布.计算选用κ-ω和SST(Shear-Stress Transport)湍流模型,主流雷诺数Re=3 198.4~6 716.6,吹风比M=0.2~1.2,旋转数Rt=0~0.015 9.结果表明:旋转数的增大导致气膜孔下游中心区域的冷却效率下降,但使压力面整场的冷却效果略有提高;吹风比的增大使得吸力面和压力面上的冷却效率逐渐降低,主流雷诺数的变化对壁面整体冷却效果则影响不大.此外,相同工况下吸力面上的冷却效率要高于压力面上的对应值.  相似文献   

7.
旋转状态下涡轮叶片压力面气膜冷却特性   总被引:3,自引:0,他引:3  
通过1.5级涡轮叶片旋转气膜冷却实验,揭示了整级涡轮叶片在旋转状态下的气膜冷却规律.实验中,主流雷诺数为8×104,旋转数分别为2.092,2.324和2.448,吹风比从0.3到3.0变化,冷却工质分别采用空气和二氧化碳,对应射流主流密度比分别为1.03和1.57.叶片表面喷有宽幅液晶,通过高精度CCD相机得到表面温度场.结果表明:压力面上,气膜冷却效率随吹风比的增大而升高,随旋转数的增大而降低;气膜轨迹向高半径方向偏转,偏转程度随旋转数的增大而加剧;提高射流主流密度比,有利于提高冷却效率.  相似文献   

8.
采用数值模拟方法对不同雷诺数下静止状态涡轮叶片前腔带气膜孔出流的冲击流动与换热特性进行了研究.分析了叶片前缘冲击流动产生的不同涡团对其内表面换热的作用机理.计算结果表明:相同雷诺数下,叶片前缘内表面气膜孔附近的换热强化比高于通道的平均值.随着雷诺数增加,换热强化比有所提高.冲击流动与通道流动耦合而形成的波浪形涡区,极大地扩展了冲击强化换热区域.气膜孔出流的抽吸作用对冲击流产生影响,进一步扩大了冷却空气在前缘内表面的覆盖范围.气膜腔叶根处纵向截面的涡团阻碍了冷气向叶根方向扩展,降低了冷却效率;而横向截面的涡团则促进冷气与壁面热气的掺混,提升了换热效果.   相似文献   

9.
两种层板性能对比   总被引:2,自引:0,他引:2  
针对常规的141型层板,提出了一种增加50%数量扰流柱的设计,即161型层板.采用实验和数值模拟相结合的办法研究了两种类型层板在流阻和换热方面的差别.换热实验部分采用了辐射式加热设备,测量了层板上下表面平均壁温,以及冷气进、出口截面间的焓差,得到了相应进气雷诺数下的层板体积换热努塞尔数.发现161模型流阻降低20%,换热增强5%.对一些实验工况,采用三维计算流体力学程序进行了流-固耦合传热数值模拟,所得结果在趋势上与实验一致,在数值上,流阻和换热与实验结果分别相差5%和30%.利用数值模拟结果分析并比较了两种模型在流场和表面对流换热系数分布方面的细节差别.   相似文献   

10.
表面粗糙或带凸起转盘风阻扭矩实验   总被引:2,自引:0,他引:2  
为研究壁面不同粗糙程度以及带有螺栓等表面凸起的转盘风阻扭矩特性,建立了一个转盘扭矩测量实验台.自由盘测量结果与经典经验关系式较好的符合度验证了测量方法的准确性.分析研究了在不同粗糙度以及附有6种凸起结构的转盘风阻扭矩规律.结果表明,壁面的粗糙会增大转盘受到的扭矩,在所测量旋转雷诺数范围内,从气动光滑一直到粗糙高度0.2 mm,扭矩系数增大1倍.基于气动光滑自由盘经验关系式进一步总结出相对粗糙度对于风阻扭矩的影响系数.对比6种凸起引起的风阻扭矩特性发现,叶型凸起会大幅降低风阻扭矩.凸起安装迎风角度的改变会带来10%的风阻扭矩差别.结合自由光滑盘扭矩系数经验关系式,总结出不同凸起形状对于扭矩系数的影响因数.  相似文献   

11.
通过对带有90°倾角圆柱形交错孔排的涡轮叶片模型进行数值模拟,得到了不同主流雷诺数、旋转数和吹风比情况下前缘面与后缘面侧的气膜冷却流动与换热特性及各气膜孔流量系数的分配规律.结果表明,冷气受到离心力与哥氏力的共同作用向高半径处发生偏转,导致壁面冷却效率降低;雷诺数的增大会削弱气膜冷却效果,高吹风比则不利于气膜孔下游区域的冷却.各气膜孔的流量系数随吹风比的增大而增大,随旋转数的提高而减小.在后缘面侧,相同工况下各气膜孔的流量系数明显高于前缘面侧对应气膜孔的值.   相似文献   

12.
针对旋转光滑矩形通道分别应用针对旋转状态修正的 k-ε、标准k-ω以及提出的针对旋转状态修正的k-ω湍流模型进行流动和换热的数值模拟,通过与实验结论的对比,讨论了采用不同湍流模型对计算结果的影响.计算工况为旋转数Ro=0.24,流体进口雷诺数Re=25000.计算结果表明:采用所提出的针对旋转状态修正的k-ω湍流模型的计算结果要比采用针对旋转状态修正的k-ε以及标准k-ω湍流模型的计算结果更接近实验结论.  相似文献   

13.
冲击与气膜的组合形式对冷却效果的影响   总被引:1,自引:2,他引:1  
通过数值模拟,研究了涡轮叶片弦中区所采用的新型双层腔冷却结构的冷却特性,系统分析了冲击与气膜的组合冷却流动换热的机理,讨论了冲击孔与气膜孔的组合形式对组合冷却效果的影响.计算参数范围是:吹风比M=0.6~2.0,冷气进口雷诺数Re=2000~5000.计算结果表明:①气膜孔与冲击孔的位置及其排列方式对双层腔结构的冷却效果的影响是非常明显的,且存在一个最佳的组合冷却形式;②在狭小的封闭空间内,冲击靶面的努塞尔数分布呈明显的双峰结构,冲击滞止点处于两个峰值之间的峰谷.   相似文献   

14.
气膜冷却是应用于航空燃气轮机上的冷却技术,旋转及表面曲率是影响气膜与 主流掺混区域的重要因素,通过数值计算方法对旋转状态下曲率对气膜与主流掺混区域的影 响进行了研究,湍流模型选取了k-ω模型.增加旋转速度,会引起吸力面气膜的分离; 固定转速,降低表面曲率半径,压力面气膜发生分离,吸力面气膜冷却效果得到改善.当动 量流量比在小于1的范围内变化时,旋转只改变压力面气膜与主流掺混区域的分布,而对吸 力面没有影响.   相似文献   

15.
在旋转状态下,研究了涡轮内冷蛇形通道的非稳态换热特性.实验主要针对旋转状态下,通道内流量的变化和系统旋转速度的变化来进行的.结果表明:对于旋转通道的非稳态过程,换热系数的变化呈波动变化过程,且主要发生在实验参数变化的阶段.加速旋转时,角加速度力的作用会加强进气通道前缘面的换热,而降低后缘面的;减速旋转时,情况相反.而且,角加速度力的作用效果容易在旋转开始变化的时刻显现.当旋转速度在2个值之间往复时,换热系数变化呈现滞后环状,旋转速度越高滞后环越大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号