首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Infrared Space Observatory (ISO), a fully approved and funded project of the European Space Agency (ESA), is an astronomical satellite, which will operate at wavelengths from 2.5–240 m. ISO will provide astronomers with a unique facility of unprecedented sensitivity for a detailed exploration of the universe ranging from objects in the solar system right out to distant extragalactic sources. The satellite essentially consists of a large cryostat containing at launch over 2000 litres of superfluid helium to maintain the Ritchey-Chrétien telescope, the scientific instruments and the optical baffles at temperatures between 2 K and 8 K. The telescope has a 60-cm diameter primary mirror and is diffraction-limited at a wavelength of 5 m. A pointing accuracy of a few arc seconds is provided by a three-axis-stabilisation system consisting of reaction wheels, gyros and optical sensors. ISO's instrument complement consists of four instruments, namely: an imaging photo-polarimeter (2.5–240 m), a camera (2.5–17 m), a short wavelength spectrometer (3–45 m) and a long wavelength spectrometer (43–196 m). These instruments are being built by international consortia of scientific institutes and have been delivered to ESA for in-orbit operations. ISO will be launched in September 1995 by an Ariane 4 into an elliptical orbit (apogee 70000 km and perigee 1000 km) and will be operational for at least 18 months. In keeping with ISO's role as an observatory, the majority of its observing time is being made available to the general astronomical community via a Call for Observing Proposals.  相似文献   

2.
《Space Science Reviews》1989,49(1-2):125-138
The Gamma-1 telescope has been developed through a collaboration of scientists in the USSR and France in order to conduct -ray astronomical observations within the energy range from 50 to 5000 MeV. The major characteristics of the telescope were established by Monte-Carlo simulations and calibrations made with the aid of electron and tagged -ray beams produced by an accelerator, and these have been found to be as follows: the effective area for photons coming along the instrument's axis varies from about 50 cm2 at E = 50 MeV to approximately 230 cm2 at E 300 MeV; the angular resolution (half opening of the cone embracing 68% events) is equal to 2.7° at E = 100 MeV, and 1.8° at E = 300 MeV; the energy resolution (FWHM) varies from 70% to 35% as the energy of the detected photons increases from 100 to 550 MeV; the telescope's field-of-view at the half-sensitivity level is 300–450 square degrees depending upon the spectrum of the detected radiation, and the event selection logic. Proceeding from the thus obtained characteristics it is demonstrated that a point source producing a photon flux J (E 100 MeV) = 3 × 10-7 cm-2 s-1, can be detected with a 5 significance by observing it during 106 s at the level of the Cygnus background, and a source having intensity J (E 100 MeV) = 10-6 cm-2 s-1 can be detected to within a mean square positional accuracy of about 15.  相似文献   

3.
We report the results of a study of the 12-hour average distribution functions of high Z nuclei as measured over a 10-day interval on the Ulysses spacecraft at a helioradius of5.2 A.U. We use the good time and atomic mass resolution of the composition aperture of the HI-SCALE instrument to determine the form of the distribution functions for C, O, Ne, Mg, Si, and Fe over the energy range 0.5–16 MeV/nucl. We find that the distribution functions of these ions can be organized by characteristic velocities that have values ranging between2000–3500 km/sec over this interval.  相似文献   

4.
Following the success of Einstein, it is clear that telescopes of very large area (10 cm) with angular resolution (20) are needed for deep X-ray surveys and other observations. After a discussion of these objectives, which form the basis of the NASA LAMAR mission, the design & performance of a five mirror telescope is described. The system was studied for possible flight on Spacelab to undertake observations & to act as a prototype module for LAMAR. Both diamond turning & replication methods of mirror production are discussed. The performance of a single Wolter I telescope with diamond turned mirrors will be described.  相似文献   

5.
For five years, theEdison program has had the goal of developing new designs for infrared space observatories which will break the cost curve by permitting more capable missions at lower cost. Most notably, this has produced a series of models for purely radiative and radiative/mechanical (hybrid) cooling which do not use cryogens and optical designs which are not constrained by the coolant tanks. Purely radiatively-cooled models achieve equilibrium temperatures as low as about 20 K at a distance of 1 AU from the sun. More advancedEdison designs include mechanical cooling systems attached to the telescope assembly which lower the optical system temperature to 5 K or less. Via these designs, near-cryogenic temperatures appear achievable without the limitations of cryogenic cooling. OneEdison model has been proposed to the European Space Agency as the next generation infrared space observatory and is presently under consideration as a candidate ESA Cornerstone mission. The basic design is also the starting point for elements of future infrared space interferometers.  相似文献   

6.
We review the X- and gamma-ray observations of Cygnus X-1 and their theoretical interpretations, with emphasis on new developments since the mid-1970's. The overall data base at present is most consistent with the inverse Compton model by hot thermal electrons of T e 109 K, for the hard X-ray luminosity (10–200 keV). However, the origin of the soft X-rays ( 10 keV) in high states and gamma rays (> 200 keV) remain unsettled.Operated under DOE Contract W-7405-Eng-48.Partially supported by NASA Grant NGR 05-020-668.NRC/NRL Research Associate.  相似文献   

7.
The modern state of gamma-ray astronomy is reviewed, the paper being mainly devoted to the theoretical models that describe generation of gamma-ray emission under astrophysical conditions. Basic information on the processes of generation and absorption of gamma-rays, as well as the results of observations for various gamma-ray photon energies are reported.In the region of soft gamma-ray emission (i.e., for energies less than tens of MeV), where emission in gamma-ray lines dominates, we also discuss the nature of gamma-ray bursts, the origin of gamma-ray emission from the galactic centre, etc.Discrete sources and, in particular, the mysterious source Cyg X-3 are discussed in the region of very high (E > 1012 eV) and ultra-high (E > 1015 eV) energy gamma-ray emission.A larger portion of the review is devoted to the analysis of cosmic-ray origin on the basis of the available gamma-ray data in the region from several tens of MeV to several GeV. The peculiarity of this energy range is, in particular, in the fact that the diffuse galactic emission was observed mainly there. We also discuss the problem of determination of the cosmic-ray density gradient from the gamma-ray data.The origin of high-latitude gamma-ray emission, the problem of galactic gamma-ray halo, etc., are discussed.The theoretical models explaining the nature of unidentified gamma-ray sources, as well as the results of measurements and theoretical estimations of a gamma-ray flux from SN1987A are analysed.List of Notations m electron mass, m = 9.108 × 10–28 g, - M proton mass, M = 1.672 × 10–24 g, - e electron charge, e = 4.803 × 10–10 CGS - c velocity of light, c = 2.9979 × 1010 cm s–1, - k Boltzmann constant, k = 1.380 × 10–16 erg grad–1, - e electron - p proton - gamma-ray photon - p antiproton - 0 0-meson - -lepton - e + positron - r, , x radio-frequency, gamma-ray, and X-ray emission bands - E total energy of a particle - E k kinetic energy - p particle momentum - spectral index for particles - spectral index for emission - n particle density (concentration) - H magnetic field strength - T temperature - ph energy of low-energy photons - emission frequency - r H Larmor radius of relativistic particles - k wave number - , z cylindric coordinates, in this case the coordinate (radius) along the galactic disk, z perpendicular to the galactic disk - M solar mass, M = 1.99 × 1033 g.  相似文献   

8.
Solar Corona Sounders (SCS), a mission designed to utilize the radio occultation technique for investigations of the inner heliosphere, was submitted to ESA in response to a call for new mission concepts. The SCS platforms are two small multifrequency transmitters placed at the anti-Earth position (superior solar conjunction) for continuous radio sounding of the solar corona. Appropriately specifying certain orbital elements for the heliocentric trajectories of the spacecraft, their radially-aligned positions as seen from Earth appear to circle the solar disk over the course of a year. The two radio sources would be most effectively positioned at apparent solar distances inside and outside the nominal solar wind critical point, respectively, e.g., at 3 R and 10 R. Radio parameters to be measured using the linearly polarized, coherent dual-frequency links to ground include the group time delay, signal amplitude, the phase (Doppler) shift, linewidth, and Faraday rotation. The link frequencies for coronal sounding observations this close to the Sun could be the interplanetary standards at S-band (2.3 GHz) and X-band (8.4 GHz). These measurements are used to derive both mean values and fluctuation spectra of such coronal parameters as the electron density, the solar wind velocity, and the magnetic field. The geometry afforded by the two radio ray paths from the SCS transmitters would provide unprecedented observations of the radial evolution of dynamic coronal events such as coronal mass ejections.  相似文献   

9.
Solar wind charge states measured by ULYSSES/SWICS in the south polar hole   总被引:1,自引:0,他引:1  
The Ulysses mission now has an extensive data base covering several passes of the south polar coronal hole as the spacecraft proceeds to higher latitudes. Using composition measurements from the SWICS experiment on the Ulysses spacecraft, we have obtained charge state distributions, and hence inferred coronal ionization temperatures, for several solar wind species. In particular, we present an overview of Oxygen ionization temperature measurements, based on the O7+/O6+ ratio, for the period January 1993 until April 1994 (23°S to 61°S heliographic latitude), and detailed Oxygen, Silicon and Iron charge state distributions of the south polar hole during a two month period of nearly continuous hole coverage, Dec 1993–Jan 1994 (45°S to 52°S heliographic latitude).  相似文献   

10.
《Space Science Reviews》1989,49(1-2):111-124
The telescope Gamma-1 is designed to investigate cosmic gamma rays in the energy range from 50 MeV to 5000 MeV. The geometrical sensitive area of the telescope amounts to 1500 cm2, the angular resolution in each direction is equal to 1.2° at the energy 300 MeV and is about 20 when including a coded mask in the telescope, the energy resolution changes from 70% at 100 MeV to 35% at 550 MeV. The characteristics of the telescope and its systems have been determined by the Monte-Carlo method as well as by accelerator calibrations. Discrete sources at the intensity level of 10–7 quanta cm–2 s–1 may be recorded in a year of observations with the gamma-ray telescope Gamma-1 with a source location accuracy of 10 arc min.  相似文献   

11.
The visible extragalactic background (though as yet undetected) is insufficient to explain the abundance of heavy elements in galaxies: either there should be some diffuse extragalactic light in the near infrared (from 1 to 10 m) and/or in the far infrared (100 m) if dust has reprocessed the star light. We propose a new space mission to be dedicated to the search and mapping of primordial stellar light from the visible to the mid-infrared (20 m). In this spectrum range, detectors have reached such a sensitivity that the mission should aim at being (source) photon noise limited, and not any longer background photon noise limited. For that purpose, a small passively cooled telescope with large format CCDs and CIDs could be sent beyond the zodiacal dust cloud (which is absent beyond a solar distance of about 3 AU). In that case, the only remaining foregrounds before reaching the extragalactic background, is due to the Milky Way integrated emission from stars and the diffuse galactic light due to scattering and emission by interstellar dust, which are all unavoidable. Maps of the extragalactic light could be obtained at the arcminute resolution with high signal to noise ratio. This mission is the next logical step after IRAS, COBE and ISO for the study of extragalactic IR backgrounds. It has been proposed as a possible medium-sized mission for the post-horizon 2000 ESA program that could be a piggy back of a planetary mission.  相似文献   

12.
X-ray pulsar Vela X-l was observed with the X-ray astronomy satellite HAKUCHO in five occasions between March 1979 and March 1981. An increase of the pulsation period at an average rate of P/P 3.0 × 10–4 yr–1 was observed over the time span of two years. Besides, variations of the pulse period in the time scale of 10 days were resolved in superposition on the secular spin-down trend. The observed rate of change P - 3 × 10–8, for both spin-up and spin-down, is an order of magnitude greater than the secular spin-down rate.  相似文献   

13.
Since the baryon-to-photon ratio 10 is in some doubt at present, we ignore the constraints on 10 from big bang nucleosynthesis (BBN) and fit the three key cosmological parameters (h, M, 10) to four other observational constraints: Hubble parameter (ho), age of the universe (to), cluster gas (baryon) fraction (fo fGh3/2), and effective shape parameter (o). We consider open and flat CDM models and flat CDM models, testing goodness of fit and drawing confidence regions by the 2 method. CDM models with M = 1 (SCDM models) are accepted only because we allow a large error on ho, permitting h < 0.5. Open CDM models are accepted only for M 0.4. CDM models give similar results. In all of these models, large 10 ( 6) is favored strongly over small 10 ( 2), supporting reports of low deuterium abundances on some QSO lines of sight, and suggesting that observational determinations of primordial 4He may be contaminated by systematic errors. Only if we drop the crucial o constraint are much lower values of M and 10 permitted.  相似文献   

14.
The Heavy Ion Counter on the Galileo spacecraft will monitor energetic heavy nuclei of the elements from C to Ni, with energies from 6 to 200 MeV nucl-1. The instrument will provide measurements of trapped heavy ions in the Jovian magnetosphere, including those high-energy heavy ions with the potential for affecting the operation of the spacecraft electronic circuitry. We describe the instrument, which is a modified version of the Voyager CRS instrument.  相似文献   

15.
We review aspects of anomalous cosmic rays (ACRs) that bear on the solar modulation of energetic particles in the heliosphere. We show that the latitudinal and radial gradients of these particles exhibit a 22-year periodicity in concert with the reversal of the Sun's magnetic field. The power-law index of the low energy portion of the energy spectrum of ACRs at the shock in 1996 appears to be -1.3, suggesting that the strength of the solar wind termination shock at the helioequatorial plane is relatively weak, with s 2.8. The rigidity dependence of the perpendicular interplanetary mean free path in the outer heliosphere for particles with rigidities between 0.2 and 0.7 GV varies approximately as R2, where R is particle rigidity. There is evidence that ACR oxygen is primarily multiply charged above 20 MeV/nuc and primarily singly-charged below 16 MeV/nuc. The location of the termination shock was at 65 AU in 1987 and 85 AU in 1994.  相似文献   

16.
The Transient Gamma-Ray Spectrometer (TGRS) to be flown aboard the WIND spacecraft is primarily designed to perform high resolution spectroscopy of transient -ray events, such as cosmic -ray bursts and solar flares over the energy range 25 keV to 8.2 MeV with an expected spectroscopic resolution of 3 keV at 1 MeV. The detector itself consists of a 215 cm3 high purityn-type Ge crystal kept at cryogenic temperatures by a passive radiative cooler. The geometric field of view defined by the cooler is 1.8 steradian. To avoid continuous triggers by soft solar events, a thin BeCu Sun-shield around the sides of the cooler has been provided. A passive Mo/Pb occulter, which modulates signals from within ±5° of the ecliptic plane at the spacecraft spin frequency, is used to identify and study solar flares, as well as emission from the galactic plane and center. Thus, in addition to transient event measurements, the instrument will allow the search for possible diffuse background lines and monitor the 511 keV positron annihilation radiation from the galactic center. In order to handle the typically large burst count rates, which can be in excess of 100 kHz, burst data are stored directly in an onboard 2.75 Mbit burst memory with an absolute timing accuracy of ±1.5 ms after ground processing. The memory is capable of storing the entire spectral data set of all but the largest bursts. WIND is scheduled to be launched on a Delta II launch vehicle from Cape Canaveral on November 1, 1994. After injection into a phasing orbit, the spacecraft will execute a double lunar swing-by before being moved into a controlled halo orbit about theL1 Lagrangian point (250R e towards the Sun). This will provide a 5 light-second light travel time with which to triangulate gamma-ray burst sources with Earth-orbiting systems, such as those on-board the Gamma-Ray Observatory (GRO). The response of instrument to transient -ray events such as GRB's and solar flares will be presented as well as the expected response to steady state point sources and galactic center line emission.  相似文献   

17.
In this paper we discuss theoretical expressions, determining the difference of Doppler shifts of various coherent radiowave frequencies emitted by a radiator moving in the ionosphere or interplanetary medium. The rotating Doppler effect (Faraday effect) caused by the Doppler shifts ±H of the ordinary and extraordinary waves is also considered. In a three-dimensional inhomogeneous ionosphere, stationary in time (N/t = 0), is determined in the general case, by an equation with three variables. The equation for proper depends only on the local value of the electron concentration N c around the radiator and on integral values, determining, by means of additional calculations, the angle of refraction or its components, the horizontal gradients of electron concentration N/x and N/y, and in some cases, the integral electron concentration 0 zcN dz. We describe the analysis of the measurements, made with the satellites Cosmos I, II and partially XI, assuming that N/t = N/y = 0, with a two variables equation. The expected errors are considered. The results coincide well for different points (Moscow, The Crimea, Sverdlovsk) and thus agree with the measurements of H and with height-frequency ionospheric characteristics. The curve giving electron concentration versus height N (z) in the outer ionosphere (above the maximum of F2), shows a new maximum higher than the main maximum of the ionosphere N MF2 at 120–140 km. At this maximum the value of N (z) is (0.9–0.95) N MF2. The new data on the large-scale horizontal inhomogeneities of the ionosphere, exceed the previous ones by about a factor 10. By means of the irregular variations of the spectrum W() of the inhomogenous formation is determined. Three unknown constant maxima with values 16 to 18 km, 28 to 32 km and 100 to 120 km are found. The spectrum W () mainly characterizes the local properties of the ionosphere along the orbit of the satellite.  相似文献   

18.
The Medium Energy Instrument on EXOSAT, although conceived as the main instrument for occultations, has been made sufficiently versatile to provide a significant advance over previous large area proportional counters when used for individual source studies of timing and spectra. The energy range is 1.2 to 50 keV, with E/E of 0.2 at 6 keV, sufficient to detect iron lines. The effective area of 1800 cm2 and narrow field of view (3/4° × 3/4°) make it suitable for the detailed study of sources down to the 0.3 mCrab confusion limit. The unique facility provided by EXOSAT, allowing uninterrupted observations of X-ray sources for periods of up to 80 hours, backed up by a high capacity data link and on-board processing, enables timing studies to be performed over the range from milliseconds to days. Sophisticated background discrimination techniques giving a rejection efficiency of99% will control the background count rate to a suitably low value in the environment of the 200,000 km orbit.  相似文献   

19.
High spatial (1) and temporal (20 s) resolution UV spectroscopy of the Sun has been carried out with a new instrument flown on sounding rockets. These observations reveal a multitude of new highly energetic phenomena in the outer solar atmosphere which may play a decisive rôle in the mechanical energy balance of the chromosphere, transition zone and corona.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   

20.
The Coronal Helium Abundance Spacelab Experiment, (CHASE), basically consists of a grazing incidence telescope and spectrometer sensitive over the range 150–1335 Å. Whilst aimed primarily at deriving the solar helium abundance from measurements of coronal resonance scattering, its specification has been extended in order to provide a more general purpose solar XUV facility. The instrument will be flown on the Spacelab 2 Mission, currently scheduled for launch in November 1984.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号