首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The requirements and design philosophy for developing ground-based automation planning and control advisory concepts to best serve aircraft with flight management systems (FMS) are defined. Analytical results are presented that are based on the comparison of operational data with the user-preferred trajectories to identify flying-time variabilities in various segments of arriving flights. En route descents, terminal maneuvering areas, and the final approaches are considered to determine the impact of aircraft and environmental factors on flying times essential for traffic planning. Simple time-estimation algorithms based on FMS-defined speed schedules and prevailing winds are presented for estimating flying times during en route descents. Automation, planning and control concepts are developed that utilize flexible route structures and a speed-control strategy to permit the aircraft maximum use of FMS and onboard avionics in all operating conditions  相似文献   

2.
《Aerospace engineering》1991,11(7):13-16
Future space travel to the moon and Mars will present new challenges in space suit design. This paper examines the impact that working on the surface environment of the moon and Mars will have on the requirements of space suits. In particular, habitat pressures will impact suit weight and design. Potential structural materials are explored, as are the difficulties in designing a suit to withstand the severe dust conditions expected.  相似文献   

3.
在地球大气层与火星大气层中,使用自己编制的DSMC(direct simulation Monte Carlo)源程序完成了四种飞行器(即Apollo,Orion,Mars Pathfinder以及Mars Microprobe)高超声速穿越稀薄气体时的三维绕流计算,给出了上述飞行器42个典型飞行工况(其中包括在地球大...  相似文献   

4.
Understanding the processes involved in the interaction of solar system bodies with plasma flows is fundamental to the entire field of space physics. The features of the interaction can be very different, depending upon the properties of the incident plasma as well as the nature of the obstacle. The properties of the atmosphere/ionosphere associated with the obstacle are of particular importance into understanding the plasma interaction process, especially for non-magnetized obstacle. This paper discusses in detail the roles of the atmosphere and ionosphere systems of plasma interaction around Venus, Mars, comets and some particular satellites. The coupling between magnetosphere and ionosphere is also discussed for Earth and Giant planets.  相似文献   

5.
基于数值虚拟飞行技术的飞行器动态特性分析   总被引:1,自引:0,他引:1  
黄宇  阎超  席柯  王文 《航空学报》2016,37(8):2525-2538
基于结合结构重叠网格、闭环PID控制器、舵偏控制律、刚体六自由度运动和非定常Navier-Stokes方程求解等模块的数值虚拟飞行技术,对“起源号”返回舱、基本带翼导弹外形的多自由度非定常运动、受控特性及控制参数的整定开展了模拟。分析了不同自由度(DOF)下飞行器的运动特性,飞行器受扰动后的稳定性及控制参数的整定。计算结果表明:利用数值虚拟飞行技术可有效地开展复杂流动下飞行物体非线性运动问题的研究,对研究飞行器在非线性流动下的动态特性、受控特性、流动机理研究以及控制律的设计检验具有较高的工程价值和应用前景。  相似文献   

6.
Impact of erosion testing aspects on current and future flight conditions   总被引:1,自引:0,他引:1  
High speed of aero vehicles including commercial and military aircraft, missiles, unmanned air vehicles, as well as conceptual aircraft of the future are imposing larger restrictions on the materials of these vehicles and highlight the importance of adequate quantification of material behavior and performance during different flight conditions. Erosion due to weather conditions and other present particles such as hydrometeors; rain, hail and ice, as well as sand, volcanic ash and dust resulting from residues in the atmosphere are eminent as hazardous on the structure of a flying vehicle and may adversely influence the lifecycle of the structure. This study outlines an extensive review of research efforts on erosion in aviation and provides a basis for comparison between different apparatus simulating rain erosion and their usage within the aerospace industry. The significant aspects of erosion testing and future prospects for erosion impact are further addressed for forthcoming generations of flying vehicles.  相似文献   

7.
All aerospace vehicles have the common constraint of limited space for the electronic systems. The challenge has always been how to pack effective electronic systems into the space available. Higher levels of electronic integration can give a competitive advantage; for example, by providing extra channels in a communications satellite thereby increasing revenue to the operator. Today's deep sub-micron manufacturing processes for integrated electronics offer an opportunity for a step change for electronic functionality that can be packaged in a given space. This technology makes possible, for the first time, a true system-on-chip approach to electronic systems, which is already being exploited by the commercial sector in products such as the mobile telephone  相似文献   

8.
《中国航空学报》2016,(5):1367-1377
A systemic and validated model was developed to predict ultraviolet spectra features from the shock layer of near-space hypersonic vehicles in the ‘‘solar blind" band region. Computational procedures were performed with 7-species thermal non-equilibrium fluid mechanics, finite rate chemistry, and radiation calculations. The thermal non-equilibrium flow field was calculated with a two-temperature model by the finite volume technique and verified against the bow-shock ultra-violet(BSUV) flight experiments. The absorption coefficient of the mixture gases was evaluated with a line-by-line method and validated through laboratory shock tube measurements. Using the line of sight(LOS) method, radiation was calculated from three BSUV flights at altitudes of 38,53.5 and 71 km. The investigation focused on the level and structure of ultraviolet spectra radiated from a NO band system in wavelengths of 200–400 nm. Results predicted by the current model show qualitative spatial agreement with the measured data. At a velocity of 3.5 km/s(about Mach11), the peak absolute intensity at an altitude of 38 km is two orders of magnitude higher than that at 53.5 km. Under the same flight conditions, the spectra structures have quite a similar distribution at different viewing angles. The present computational model performs well in the prediction of the ultraviolet spectra emitted from the shock layer and will contribute to the investigation and analysis of radiative features of hypersonic vehicles in near space.  相似文献   

9.
飞翼布局无人机抗侧风自动着陆控制   总被引:2,自引:1,他引:2  
嵇鼎毅  陆宇平 《飞机设计》2007,27(2):25-28,33
飞翼飞机是一种先进的飞行结构。但由于气动外形的特殊,无垂直尾翼的飞翼飞机在横侧向稳定性方面不如常规飞机。特别是在着陆阶段,极易受到侧风的干扰而使其偏离航线。本文针对飞翼飞机的特性,采用不同于常规飞机的控制律,设计了3种抗侧风控制方案。设计出的抗侧风控制系统经过仿真试验,结果显示,达到了预期的控制目标。  相似文献   

10.
李锦  耿湘人  陈坚强  江定武  李红喆 《航空学报》2020,41(7):123240-123240
为解决化学反应模型高温数据缺乏的难题,探索DSMC方法量子动理学(QK)模型在实际中的应用,本文将该模型进一步应用于火星探测器稀薄气动特性的数值预测。通过计算探路者号在85 km、95 km和110 km高度的稀薄绕流,评估了QK模型的性能和稀薄气体效应的影响规律。结果表明,QK模型不依赖宏观的化学反应速率系数,适用于火星再入流动计算。化学反应及其模型对气动力的影响很小,但对气动热特性的影响不容忽略,考虑化学反应后的驻点热流可以下降约12%~14%。  相似文献   

11.
With control using redundant multiple control surface arrangement and large-deflection drag rudders,a combat flying wing has a higher probability for control surface failures.Therefore,its flight control system must be able to reconfigure after such failures.Considering three types of typical control surface failures(lock-in-place(LIP),loss-of-effectiveness(LOE) and float),flight control reconfiguration characteristic and capability of such aircraft types are analyzed.Because of the control surface redundancy,the aircraft using the dynamic inversion flight control law already has a control allocation block.In this paper,its flight control configuration during the above failures is achieved by modifying this block.It is shown that such a reconfigurable flight control design is valid,through numerical simulations of flight attitude control task.Results indicate that,in the circumstances of control surface failures with limited degree and the degradation of the flying quality level,a combat flying wing adopting this flight control reconfiguration approach based on control allocation could guarantee its flight safety and perform some flight combat missions.  相似文献   

12.
Metallic ions coming from the ablation of extraterrestrial dust, play a significant role in the distribution of ions in the Earth’s ionosphere. Ions of magnesium and iron, and to a lesser extent, sodium, aluminium, calcium and nickel, are a permanent feature of the lower E-region. The presence of interplanetary dust at long distances from the Sun has been confirmed by the measurements obtained by several spacecrafts. As on Earth, the flux of interplanetary meteoroids can affect the ionospheric structure of other planets. The electron density of many planets show multiple narrow layers below the main ionospheric peak which are similar, in magnitude, to the upper ones. These layers could be due to long-lived metallic ions supplied by interplanetary dust and/or their satellites. In the case of Mars, the presence of a non-permanent ionospheric layer at altitudes ranging from 65 to 110 km has been confirmed and the ion Mg+?CO2 identified. Here we present a review of the present status of observed low ionospheric layers in Venus, Mars, Jupiter, Saturn and Neptune together with meteoroid based models to explain the observations. Meteoroids could also affect the ionospheric structure of Titan, the largest Saturnian moon, and produce an ionospheric layer at around 700 km that could be investigated by Cassini.  相似文献   

13.
We review electrical activity in blowing sand and dusty phenomena on Earth, Mars, the Moon, and asteroids. On Earth and Mars, blowing sand and dusty phenomena such as dust devils and dust storms are important geological processes and the primary sources of atmospheric dust. Large electric fields have been measured in terrestrial dusty phenomena and are predicted to occur on Mars. We review the charging mechanisms that produce these electric fields and discuss the implications of electrical activity to dust lifting and atmospheric chemistry. In addition, we review theoretical ideas about electric discharges on Mars. Finally, we discuss the evidence that electrostatics is responsible for dust transport on the Moon and asteroids.  相似文献   

14.
飞行器多学科设计优化中的灵敏度分析方法研究   总被引:8,自引:0,他引:8  
近年来,在飞行器设计领域,多学科设计优化(MDO)方法得到了高度重视。灵敏度分析技术作为MDO的关键技术之一,被认为是处理飞行器MDO研究中四个复杂性问题的有力工具。本文对适用于飞行器MDO的灵敏度分析方法进行了系统研究。首先介绍了多种学科灵敏度分析方法,阐述了各种方法的原理,比较了各种方法的优缺点。在此基础上,进一步探讨了几种常用的系统灵敏度分析方法。最后,总结了各种灵敏度分析方法在飞行器MDO中应用的原则,并对发展适用性更广的广义灵敏度分析方法提出了建议。  相似文献   

15.
简要回顾了人类火星探测并成功着陆火星的历史,对火星的基本情况及进入环境进行了介绍。对火星科学实验室项目情况、飞向火星的过程及进入气动热环境进行了描述。详细介绍了火星科学实验室进入舱防热材料的发展及相关气动热试验。  相似文献   

16.
空天飞行器(ASV)跨临近空间飞行,具有高超声速、大飞行包线、参数时变等特征,必须应对故障、环境变化等高度不确定因素进行自主重构。研究和建立了ASV运动学模型,分析了时域、频域特性以及参数变化和运动特性,研究了纵向静稳定性、舵面操纵特性等与高度、马赫数的关系;提出了自主重构方案,给出了一种控制效益在线估计算法,提出并证明了可估计的充分条件;提出了基于模糊逻辑的线性规划重构算法,根据控制效益的实时估计结果对冗余异类效应器智能地进行控制分配。数值仿真验证了估计算法的稳定性和鲁棒性,说明该方案能够实现飞行器自主适应性重构,可应用于临近空间飞行器自适应控制等领域。  相似文献   

17.
We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today’s Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars’ present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.  相似文献   

18.
航天智能控制技术让运载火箭“会学习”   总被引:2,自引:0,他引:2  
包为民 《航空学报》2021,42(11):525055-525055
高可靠和智能化是未来智能航天器的主要特点,本文聚焦航天器高可靠、智能化的发展需求。梳理了中国运载火箭从无到有、从有到全的发展历程,提出了航天智能技术从航天器的可靠性做起,航天器的可靠性从航天智能控制做起,航天智能控制从"会学习"的火箭做起。围绕航天智能控制技术如何使运载火箭"会学习"的发展架构,进一步探索了"边飞边学"和"终身学习"智能控制技术的理论研究和应用现状,支撑中国"会学习"运载火箭高可靠和智能化的发展。  相似文献   

19.
Wiring system failures have resulted from arc propagation in the wiring harnesses of many aircraft and space vehicles. These failures occur when the insulation becomes conductive upon the initiation of an arc. In some cases, the conductive path of the carbon arc track displays a high enough resistance such that the current is limited, and therefore may be difficult to detect using conventional circuit protection. Often, such wiring failures are not simply the result of insulation failure but are due to a combination of wiring system factors. Inadequate circuit protection, unreliable system designs, and careless maintenance procedures can contribute to a wiring system failure. This paper approaches the problem with respect to the overall wiring system, in order to determine what steps can be taken to improve the reliability, maintainability, and safety of space power systems. Power system technologies, system designs, and maintenance procedures which have contributed to past wiring system failures are discussed. New technologies, design processes, and management techniques which may lead to improved wiring system safety are introduced  相似文献   

20.
The Air Force will require the ability to diagnose and predict component failures in order to more effectively meet the requirements of the fast and agile Aerospace Expeditionary Force (AEF) and future space vehicles. This paper will cover topics relevant to vehicle health management for current and anticipated support environments. It reflects current projects underway at the Air Force Research Laboratory in the air vehicles and human effectiveness directorates. Specifically, the predictive failures and advanced diagnostics (PFAD) for legacy aircraft, passive aircraft status system (PASS), and the space operations vehicle integrated system (SOVIS) projects will be discussed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号