共查询到10条相似文献,搜索用时 15 毫秒
1.
高能电子辐照下聚合物介质深层放电实验研究 总被引:1,自引:1,他引:1
为揭示聚合物介质材料在连续能谱高能电子辐射下的深层放电规律特征,利用~(90)Sr放射源对聚四氟乙烯(PTFE)材料进行了不同条件的辐照实验。对采集的大量放电数据进行统计分析发现,电子辐照累积时间、入射电子通量以及温度都会影响介质的放电风险以及放电脉冲特征。高能电子对样品持续数天的累积辐照会降低介质自发放电的阈值条件,辐照后期放电更加频繁,但放电强度会减弱。入射电子通量越低时,放电风险越小;通量越高时,放电频率越高,高强度放电事件的发生概率也越大。温度主要通过影响介质的电导率而影响其深层放电特性,温度下降时介质本征电导率降低,充电电位和放电风险增加;一旦发生放电,放电电流脉冲的平均幅度也更大。 相似文献
2.
为研究影响介质-导体相间结构深层充电特性的内在因素,设计了不同构型的试验样品,利用90Sr放射源模拟空间高能电子环境对样品进行深层充电辐照试验,测量了充电电位的差异。并借助深层充电三维仿真软件计算介质-导体相间结构在不同几何构型情况下的深层充电电位、电场分布。试验和仿真结果表明,介质最高表面电位以及介质内部最大电场均与介质宽度和高度呈正相关。其他条件不变时,介质越宽,或越高于导体表面,发生放电的风险就越高。在介质与导体侧面存在微小缝隙情况下,介质内最大电场显著增强,易发生内部击穿。而在介质与导体之间的真空间隙内,电场很容易超过击穿阈值,放电风险很大。航天工程应用中为降低此种结构深层充放电的风险,在满足绝缘性能及其他要求的前提下应尽量减小介质的宽度,降低介质与导体间的高度差,并确保介质与导体侧面接触良好。 相似文献
3.
4.
5.
空间电子辐照下星用热缩套管力学性能退化试验研究 总被引:1,自引:0,他引:1
为掌握星用热缩套管的力学性能在空间带电粒子辐射环境中的退化情况,分别利用1 Me V高能电子和45 ke V低能电子模拟地球同步轨道带电粒子辐射环境,研究热缩套管在这2种不同能量电子辐照下断裂伸长率和抗拉强度性能退化情况。试验结果表明,辐照后热缩套管颜色由透明变为黄色,力学性能均出现显著退化现象,且高能电子辐照后退化较低能电子辐照后更为严重。文章通过能量沉积分析、辐解气体分析、表面形貌分析和X射线光电子能谱分析等多种手段,对试验结果做出了合理解释。本研究对开展结构材料力学性能退化地面模拟试验中的能量粒子选择有指导意义。 相似文献
6.
随着电子器件特征尺寸的减小,其翻转阈值也在降低,使得空间中的高能电子或可诱发纳米器件产生翻转效应。文章选用28 nm的V7型FPGA作为研究对象,分别采用能量为0.2 MeV和1.5 MeV、注量率为5×108~1×109/(cm2·s)的电子进行辐照,结果表明试件产生了明显的翻转效应。结合高能电子作用28 nm器件的仿真结果,经分析可知,1.5 MeV能量的单个电子与器件碰撞不能发生核反应;针对高能电子诱发器件存储单元翻转的几种可能机理,初步认为该器件的翻转是由多个电子同时作用到其中形成局部电荷累积导致的。因此可见,对于电子能量高、通量大的木星等星体的辐射带环境,需考虑高能电子诱发纳米器件翻转对航天器的影响。 相似文献
7.
8.
9.