首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superresolution HRR ATR with high definition vector imaging   总被引:1,自引:0,他引:1  
A new 1-D template-based automatic target recognition (ATR) algorithm is developed and tested on high range resolution (HRR) profiles formed from synthetic aperture radar (SAR) images of targets taken from the Moving and Stationary Target Acquisition and Recognition (MSTAR) data set. In this work, a superresolution technique known as High Definition Vector Imaging (HDVI) is applied to the HRR profiles before the profiles are passed through ATR classification. The new I-D ATR system using HDVI demonstrates significantly improved target recognition compared with previous I-D ATR systems that use conventional image processing techniques. This improvement in target recognition is quantified by improvement in probability of correct classification (PCC). More importantly, the application of HDVI to HRR profiles helps to maintain the same ATR performance with reduced radar resource requirements  相似文献   

2.
A quantitative model analysis is presented to justify the extraction of high range resolution (HRR) profiles from synthetic aperture radar (SAR) images as motion-invariant features for identifying moving ground targets. A comparative study is conducted to assess the effectiveness in the identification process between using HRR profiles and SAR images as target signatures. The results indicate that HRR profiles are just as viable as SAR image for identification. Furthermore, a score-level multi-look fusion identification method has been investigated. It is found that a correct accurate identification rate of greater than 99 percent, a low false alarm rate, and a high level of identification confidence can be achieved, providing very robust performance.  相似文献   

3.
Airborne along-track interferometry for GMTI   总被引:1,自引:0,他引:1  
Synthetic Aperture Radar (SAR) Along-Track Interferometry (ATI) has been used extensively to measure ocean surface currents. Given its ability to measure small velocities (˜10 cmls) of relatively radar-dark water surfaces, there is great potential that this technique can be adapted for ground moving target indication (GMTI) applications, particularly as a method for detecting very slow targets with small radar cross-sections. Herein, we describe preliminary results from an ATI GMTI experiment. The SAR data described were collected by the dual-frequency NASAIJPL airborne radar in its standard dual-baseline ATI mode. The radar system imaged a variety of control targets including a pick-up truck, sport utility vehicles, passenger cars, a bicycle, and pedestrians over multiple flight passes. The control targets had horizontal velocities of less than 5 m/s. The cross-sections of the targets were not purposely enhanced, although the targets' refiectivities may have been affected by the existence of the GPS equipment used to record the targets' positions. Single-look and multiple-look interferograms processed to the full azimuth resolution were analyzed. In the data processed to date, all of the targets were observed by visual inspection in at least one of the four combinations of dual-frequency, dual-baseline interferometric data. This extremely promising result demonstrates the potential of ATI for GMTI applications.  相似文献   

4.
VSAR: a high resolution radar system for ocean imaging   总被引:1,自引:0,他引:1  
The velocity synthetic aperture radar (VSAR) is a conceptual synthetic aperture radar (SAR)-based sensor system for high resolution ocean imaging. The VSAR utilizes data collected by a multielement SAR system, to extract information not only about the radar reflectivity of the observed area, but also about the radial velocity of the scatterers in each pixel. This is accomplished by making use of the phase information contained in multiple SAR images, and not just the magnitude information as in conventional SAR. Using this velocity information, the VSAR attempts to compensate for the velocity distortion inherent in conventional SAR and to reconstruct the ocean reflectivity. We present the basic theory of the VSAR system and its performance. We also provide an analysis of the VSAR imaging mechanism for a statistical model of the radar returns, designed to capture the effects of speckle and of resolution degradation due to the decorrelation of the radar returns  相似文献   

5.
This focuses on the classification task performed into a multi-sensor system for the coastal surveillance. The system is composed of two platforms of sensors: a land-based platform equipped with a land based radar, an Automatic Identification System (AIS) and an infrared camera (IR); an airborne platform carrying an airborne radar that can operate in a spotlight Synthetic Aperture Radar (SAR) mode, a video camera, and a second IR camera. The tasks performed by the system are the detection, tracking, identification, and classification of multiple targets, the evaluation of their threat level, and the selection of an intervention on them. The classification algorithm implemented inside the system exploits an analytical approach based on the confusion matrix (CM) of the imaging sensors that belong to the system. Some measures of effectiveness (MoE) of the system are evaluated, considering both cases where an ideal error-free classification process and a non-ideal classification process are performed.  相似文献   

6.
We present an evaluation of the impact of a recently proposed synthetic aperture radar (SAR) imaging technique on feature enhancement and automatic target recognition (ATR) performance. This image formation technique is based on nonquadratic optimization, and the images it produces appear to exhibit enhanced features. We quantify such feature enhancement through a number of criteria. The findings of our analysis indicate that the new feature-enhanced SAR image formation method provides images with higher resolution of scatterers, and better separability of different regions as compared with conventional SAR images. We also provide an ATR-based evaluation. We run recognition experiments using conventional and feature-enhanced SAR images of military targets, with three different classifiers. The first classifier is template based. The second classifier makes a decision through a likelihood test, based on Gaussian models for reflectivities. The third classifier is based on extracted locations of the dominant target scatterers. The experimental results demonstrate that the new feature-enhanced SAR imaging method can improve the recognition performance, especially in scenarios involving reduced data quality or quantity.  相似文献   

7.
A digital simulation of coherent synthetic aperture radar (SAR) images of three-dimensional objects is described. The simulation is intended to produce representative SAR images that would be suitable for image analysis and pattern recognition studies. The procedure involves a modeling of the object using a combination of three-dimensional quadratic shapes yielding a smooth surface representation. The radar images of these models are then computed using physical optics scattering theory. Finite resolution both in range and cross-range direction is incorporated via a theoretical analysis which results in a simple Fourier transform representation of an equivalent "offset" window filter. Examples of the computer simulation for both infinite resolution and blurred or finite resolution are given for a KC-135 aircraft model.  相似文献   

8.
In this article, a new reduced-dimensional adaptive processing algorithm based on joint pixels sum-difference data for clutter rejection is proposed. The sum-difference data are obtained by orthogonal projection of the joint pixels data of different synthetic aperture radar (SAR) images generated by a multi-satellite radar system. In the sense of statistical expectation, the sum-differ- ence data contain the common and different information of the SAR images. Therefore, the objective of clutter cancellation can be achieved by adaptive processing. Moreover, based on the residual image after clutter rejection, statistical analysis of constant false-alarm rate (CFAR) detection of moving targets is also presented. Simulation results demonstrate the effectiveness and robustness of the proposed algorithm even with heterogeneous clutter and image co-registration error.  相似文献   

9.
Effects of polarization and resolution on SAR ATR   总被引:3,自引:0,他引:3  
Lincoln Laboratory is investigating the detection and classification of stationary ground targets using high resolution, fully polarimetric, synthetic aperture radar (SAR) imagery. A study is summarized in which data collected by the Lincoln Laboratory 33 GHz SAR were used to perform a comprehensive comparison of automatic target recognition (ATR) performance for several polarization/resolution combinations. The Lincoln Laboratory baseline ATR algorithm suite was used, and was optimized for each polarization/resolution case. Both the HH polarization alone and the optimal combination of HH, HV, and VV were evaluated; the resolutions evaluated were 1 ft/spl times/1 ft and 1 m/spl times/1 m. The data set used for this study contained approximately 74 km/sup 2/ of clutter (56 km/sup 2/ of mixed clutter plus 18 km/sup 2/ of highly cultural clutter) and 136 tactical target images (divided equally between tanks and howitzers).  相似文献   

10.
鲍悦  陈俊宇  施天玥  毛新华 《航空学报》2021,42(6):324502-324502
高分宽幅(HRWS)数字波束形成(DBF)合成孔径雷达(SAR)利用多通道空间采样代替部分时域采样,可以有效缓解SAR成像时高分辨率与宽测绘带间的矛盾,具有重要的军用和民用价值。现有常规DBF-SAR成像算法都假设雷达传感器相对位置精确已知,实际应用中受传感器位置测量误差影响,由位置不精确导致的相位误差会严重影响DBF-SAR高精度成像能力。在极坐标格式算法(PFA)框架下,推导了DBF-SAR成像处理后,残留相位误差的解析模型,分析了该误差对成像质量的影响。依据推导的先验相位误差解析结构模型,提出了一种基于图像对比度最优化准则的自聚焦算法。新算法通过引入先验相位结构信息,极大降低了待估参数的空间维数,可以同时改善自聚焦算法的参数估计精度和计算效率。数据处理结果验证了理论分析的正确性和所提算法的有效性。  相似文献   

11.
Radar target classification of commercial aircraft   总被引:1,自引:0,他引:1  
With the increased availability of coherent wideband radars there has been a renewed interest in radar target recognition. A large bandwidth gives high resolution in range which means target discrimination may be possible. Coherence makes cross-range resolution and radar images possible. Some of the problems of classifying high resolution range profiles (HRRPs) are examined and simple preprocessing techniques which may aid subsequent target classification are investigated. These techniques are applied to HRRP data acquired at a local airport using the Microwave Radar Division (MRD) mobile radar facility It is found that Boeing 727 and Boeing 737 aircraft can be reliably distinguished over a range of aspect angles. This augers well for future target classification studies using HRRPs  相似文献   

12.
An experiment was performed to determine the effect on radar image interpretation of: 1) rectangular instead of square pixels, and 2) spatial resolution in the presence of noncoherent averaging. The result is a proof of the hypothesis that interpretability of images is determined by a "spatial-gray-level (SGL) resolution volume" that is the product of the range resolution, the azimuth resolution, and a gray-level resolution. The last is defined as the ratio of the value exceeded 10 percent of the time to that exceeded 90 percent of the time for a chi-square distribution having twice as many degrees of freedom as the number of independent samples averaged. Since the area of the pixel enters, rather than explicit dependence on range or azimuth resolution, rectangular pixels are as interpretable as square pixels having the same area. The SGL accounts for the effect of reduction in fading on interpretability. The numerical interpretability assigned by experienced image interpreters asked to look for specific classes of targets was found to fall exponentially with increasing SGL volume, with a scale determined by the class of target. The experiment showed that, for most of the tasks assigned to the interpreters, the interpretability is reduced to 37 percent for a fully focussed synthetic-aperture radar (SAR) (1-look) for a 10-m (33-ft) square pixel. With an infinite number of samples averaged, the comparable square-pixel dimension is 48 m (157 ft). This is consistent with results obtained using LANDSAT images of about 60-m resolution.  相似文献   

13.
Super resolution synthetic aperture radar (SAR) image formation via sophisticated parametric spectral estimation algorithms is considered. Parametric spectral estimation methods are devised based on parametric data models and are used to estimate the model parameters. Since SAR images rather than model parameters are often used in SAR applications, we use the parameter estimates obtained with the parametric methods to simulate data matrices of large dimensions and then use the fast Fourier transform (FFT) methods on them to generate SAR images with super resolution. Experimental examples using the MSTAR and Environmental Research Institute of Michigan (ERIM) data illustrate that robust spectral estimation algorithms can generate SAR images of higher resolution than the conventional FFT methods and enhance the dominant target features  相似文献   

14.
A novel method for multi-angle SAR image matching   总被引:1,自引:0,他引:1  
Multi-angle synthetic aperture radar(SAR) image matching is very challenging, because the same object may cause different backscattering patterns, heavily depending on the radar incident angle. A technique based on the relations between the invariant positions of ground targets among the reference and sensed images is proposed to accommodate the nonmatching patterns. It involves a target extraction using wavelet coefficient fusion, as well as a geometric voting matching routine for searching the matched control points(CPs) in the reference and sensed images, respectively. To accelerate the speed of the search, a robust, rapidly corresponding CPs determination strategy is exploited by utilizing the global spatial transformation model, as well as a procedure of outlier removal to ensure the desired accuracy. Meanwhile, the positions of the matched point pairs are relocated using mutual information. The final warping of the images according to the CPs is performed by using a polynomial function. The results show the possibility of matching multi-angle SAR images in general cases.  相似文献   

15.
A data compression technique is developed for synthetic aperture radar (SAR) imagery. The technique is based on an SAR image model and is designed to preserve the local statistics in the image by an adaptive variable rate modification of block truncation coding (BTC). A data rate of approximately 1.6 bit/pixel is achieved with the technique while maintaining the image quality and cultural (pointlike) targets. The algorithm requires no large data storage and is computationally simple.  相似文献   

16.
保持弱细结构特征的SAR图象模拟退火重构方法   总被引:2,自引:1,他引:1  
模拟退火 ( SA)算法最先由 White R G.用于合成孔径雷达 ( SAR)图象的降斑处理。该算法在重构均匀区域和强结构区效果有很大提高 ,但也有缺点 ,尤其是过分模糊弱细结构。本文提出了一种改进的方法 ,在 SA算法中融入了边沿检测和增强步骤 ,使弱细结构得以增强并在退火过程中保持。为配合此方法 ,采用平稳下降的指数温度规划取代对数形式。通过仔细调整算法过程 ,可使新方法保留 SAR图象中的很多细小结构 ,而不使其他均匀的和强结构场景性能恶化 ,同时也没有引入其他缺陷。改进的算法更加适于中、低分辨率的 SAR图象降斑处理  相似文献   

17.
Analysis of UHF synthetic aperture radar (SAR) images has revealed a spatially correlated phase structure over a resolved target such as a long wire or a large truck. This phase variation, approximated by a simple, range-dependent factor 4πr/λ, results in a line-shaped image spatial spectrum. Such image phase and spectral features can be exploited by coherent spatial filtering to improve target-to-clutter ratios of large targets and stationary target detectability in a strong clutter environment  相似文献   

18.
A digital processing algorithm for fine-resolution imaging of synthetic aperture radar (SAR) moving targets is described. The targets may have any translational and rotational motion components relative to the data collection platform. The algorithm requires the presence of up to three prominent points in the image of the target; the signals from these points provide estimates of the unknown target motion parameters. Phase compensation and data formatting based on these estimates eliminate motion-induced phase errors. This algorithm has been implemented on a VAX computer and used to process both simulated and real SAR data of moving targets. Results obtained using the simulated data are presented  相似文献   

19.
A new technique for implementing the enhanced image processing (EIP) algorithm for the formation of inverse synthetic aperture radar (ISAR) images is presented. The EIP algorithm is required when, during the formation of an image, scattering centers on a target move out of range and/or Doppler resolution cells. This phenomenon is common for high resolution imagery of practical-sized targets. The method presented is based entirely on the fast Fourier transform (FFT) and therefore does not require the interpolation schemes that are prevalent in the standard EIP implementation. A brief review of the theory of radar imaging is presented to establish the notation for the work. Following the presentation of the new algorithm, a simple example is given to demonstrate the effectiveness of the new technique. In addition work is presented that demonstrates the processing required to reduce the sidelobes in imagery generated by the EIP technique  相似文献   

20.
聚束SAR扩展Chirp Scaling成像算法.   总被引:5,自引:2,他引:5  
在合成孔径雷达(SAR Synthetic Aperture Radar)的成像算法中,Chrip Scaling成像算法具有计算效率高的优点,因此得到了较为广泛的应用。详细研究了子孔径扩展Chirp Scaling算法在高分辩率聚束模式SAR中的应用,包括子孔径划分和方位向处理问题,针对A.Moreira等1996年所提算法在处理聚束SAR数据时所产生的问题,给出了经过改进的适合于大斜视角处理的整个计算过程的完整表达式。在给出点目标仿真的同时,利用E-SAR实际数据对述方法进行了验证,结果对具体的兼容条带和聚束两种工作模式的SAR处理机设计具有一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号