首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
针对目标检测中小目标物体漏检率及误检率高等问题,提出了一种基于Yolov3-Tiny算法的改进模型。改进k-means聚类方法,增加3×3和1×1的卷积池化层,将第9层卷积输出上采样,并与第8层卷积得到的特征图进行连接,得到新的输出:52×52卷积层,形成新的特征金字塔。基于卡尔曼滤波算法实现目标跟踪,提出融合跟踪算法的检测网络,使用匈牙利匹配算法对检测边缘框与跟踪边缘框进行最优匹配,利用跟踪结果修正检测结果,提高了检测速度,同时提升了检测能力。在ROS、Gazebo和自动驾驶仪软件PX4的综合仿真环境下对所提算法进行了对比试验。试验结果表明:改进算法平均检测速度降低了15.6%,mAP提高了6.5%。融合跟踪算法后的网络平均检测速度提高了34.2%,mAP提高了8.6%。融合跟踪算法后的网络能够满足系统实时性和准确性的要求。   相似文献   

2.
提出了一种基于边缘信息的跟踪算法,其可以实现对剧烈变化的灰度目标的精确跟踪.首先,利用基于双同心圆窗口算子的非线性边缘检测算法得到高质量的边缘信息;其次,为了解决单一边缘特征空间不能充分表征目标的难题,提出了一种通过组合边缘图像构建特征空间的方法,以便为目标建模提供充分信息;再次,在构建的特征空间中使用核估计方法对目标进行建模;在目标定位阶段,利用Kalman滤波器对目标进行预估后,再由Mean Shift算法在预估位置邻近区域实现目标定位;最后,提出了一种基于形态学的动态模型更新策略,使得算法不仅可以获得精确的目标区域,还可以实现对目标尺寸和形状变化的自适应.实验结果表明,本算法不仅可以有效跟踪剧烈变化的灰度目标,而且跟踪窗口可以实现对目标尺寸和形状的自适应.   相似文献   

3.
卫星遥感监测器下的机场区域多类目标检测在实际生活中有着重大的军用和民用意义。为了有效提升机场区域遥感图片的检测精确率,以主流目标检测方法中更快的区域卷积神经网络(Faster R-CNN)为基础框架,针对数据侧提出了ReMD数据增强算法。同时使用更具深度的残差神经网络(ResNet)以及特征融合部件-特征金字塔网络(FPN)来提取机场区域目标更鲁棒的深层区分性特征。在末端检测网络添加新的全连接层并根据目标的类间关联性组合softmax分类器以及4个logistic regression分类器进行机场区域多类目标的精确分类。实验结果表明:相比原网络改进后的网络带来了11.6%的多类平均检测精确率的提升,达到了80.5%的mAP,与其他主流网络进行对比也有更好的精确率;同时通过适当减小建议区域的输入量,可以在降低3.2%精确率的前提下将0.512 s的检测时间提速3倍,至0.173 s,根据具体任务可以合理权衡精确率和检测速度,体现了该网络的有效性以及实用性。   相似文献   

4.
针对空间非合作运动目标监控,提出了一种基于嵌入式技术的动态目标实时检测与跟踪方法,并完成了跟踪系统的研制设计和测试。该视觉目标跟踪系统以嵌入式处理器为控制器,通过相机模组获取实时视频图像,图像经过视觉检测与跟踪算法程序分析,得到目标的位置信息后,控制伺服运动系统调整相机姿态实现对动态目标跟踪。提出了基于相关滤波原理的跟踪算法,搭建了树莓派嵌入式测试系统,完成实时检测与跟踪的实验评估。实验结果表明,嵌入式处理器中检测与跟踪程序的平均运行帧率达到25FPS,伺服机构在水平360°和俯仰±60°范围内实现了对移动速度90°/s的目标的实时、稳定监控与跟踪。  相似文献   

5.
    
视觉跟踪中,高效鲁棒的特征表达是复杂环境下影响跟踪性能的重要因素。提出一种深度稀疏神经网络模型,在提取更加本质抽象特征的同时,避免了复杂费时的模型预训练过程。对单一正样本进行数据扩充,解决了在线跟踪时正负样本不平衡的问题,提高了模型稳定性。利用密集采样搜索算法,生成局部置信图,克服了采样粒子漂移现象。为进一步提高模型的鲁棒性,还分别提出了相应的模型参数更新和搜索区域更新策略。大量实验结果表明:与当前主流跟踪算法相比,该算法对于复杂环境下的跟踪问题具有良好的鲁棒性,有效地抑制了跟踪漂移,且具有较快的跟踪速率。  相似文献   

6.
随着智能控制技术的不断成熟,无人机给军事领域带来快速发展的同时也带来了威胁.因此针对空中飞行的无人机进行实时检测的任务需求,设计了一种基于Gabor深度学习的无人机目标检测算法.首先,搭建基于Gabor滤波器的深度神经网络,输入的图片经过该网络进行网格化划分,用以特征提取;然后,针对每个格子的特征利用回归算法计算其中物体的位置信息,并利用分类算法计算物体的类别信息,对以上得到的回归和分类结果进行筛选、融合得到最终的检测结果;最后,采集空中飞行的无人机真实数据构建数据集,在此基础上进行网络模型训练和算法验证.  相似文献   

7.
针对现有机器人抓取系统对硬件设备要求高、难以适应不同物体及抓取过程产生较大有害扭矩等问题,提出一种基于深度学习的视觉检测及抓取方法。采用通道注意力机制对YOLO-V3进行改进,增强网络对图像特征提取的能力,提升复杂环境中目标检测的效果,平均识别率较改进前增加0.32%。针对目前姿态估计角度存在离散性的问题,提出一种基于视觉几何组-16(VGG-16)主干网络嵌入最小面积外接矩形(MABR)算法,进行抓取位姿估计和角度优化。改进后的抓取角度与目标实际角度平均误差小于2.47°,大大降低两指机械手在抓取过程中对物体所额外施加的有害扭矩。利用UR5机械臂、气动两指机械手、Realsense D435相机及ATI-Mini45六维力传感器等设备搭建了一套视觉抓取系统,实验表明:所提方法可以有效地对不同物体进行抓取分类操作、对硬件的要求较低、并且将有害扭矩降低约75%,从而减小对物体的损害,具有很好的应用前景。  相似文献   

8.
为实现公安监控系统内容分析的精准智能及提高服务实战能力,提出一种轻量化的多目标实时检测算法。首先,基于CenterNet检测网络增加了CBNet的多融合阶梯级联结构,有效地解决了主干网络在日常监控中特征提取能力不足的问题;其次,通过模型剪枝压缩网络减少参数量,加快了监控视频分析速度。本文利用部分COCO数据集和自行采集的现场数据进行训练与测试,并与其他主流检测算法(YOLO、Faster-RCNN、SSD等)进行消融实验。实验结果表明:所提模型在公共安全监控中能有效地做到速度与精度的均衡,并具有较强的普适性。   相似文献   

9.
针对基于模型的故障诊断流程中故障检测和故障识别两个关键问题,提出了一种基于神经网络的实现方法.首先利用BP神经网络进行参数估计,并结合系统模型进行故障检测;然后采用ART2神经网络进行数据聚类,并基于聚类结果进行系统故障识别;最后,设计实现了基于BP/ART2神经网络的故障诊断系统.基于BP神经网络的参数估计方法可以准确地估计诊断对象在不同状态下的参数,为故障检测提供有效依据;基于ART2神经网络的数据聚类不仅可以识别对象的已知故障类型,还可以识别出未知故障,对先验信息较少的系统进行故障识别更具有效性.通过永磁直流电机故障诊断案例的应用,证明方法能具有一定的工程实用性.  相似文献   

10.
为了实现大幅面遥感图像中飞机目标的高效检测与准确定位,通过深度神经网络(DNN)的级联组合,提出了一种新颖的搜寻与检测相集成的飞机目标高效检测算法。首先,运用高性能的端到端DNN网络,进行停机坪与跑道区域的像素级高效精准分割,从而大幅度缩小飞机目标的搜索范围,以降低虚警发生概率,完成飞机目标候选检测区域的快速搜寻。然后,针对分割所得停机坪与跑道区域,借助手工数据集对YOLO网络模型进行迁移式强化训练,一方面可以弥补训练集在样本类型与数据规模上的不足,另一方面借助YOLO网络的强时效性优势对飞机目标的位置进行回归求解,可以显著提高飞机目标的检测效率。停机坪与跑道区域分割DNN网络在分割精度与时效性上具有显著优势,而迁移式强化训练YOLO网络不仅具有很高的检测效率,在检测精度上也能保持良好的性能。通过一系列综合实验与对比分析,验证了提出的搜寻与检测相集成的DNN级联组合式飞机目标高效检测算法的性能优势。   相似文献   

11.
为解决卫星视频中有遮挡或相似目标情况下目标跟踪的问题,提出了一种改进的相关滤波算法,在跟踪框架中加入了干扰判别模块和基于神经网络的轨迹预测模型。通过比较平均峰值相关能量指标值与自适应阈值来判别跟踪器是否受到干扰。双向长短期记忆网络以目标历史轨迹编码为输入来完成轨迹预测,结合相关滤波输出结果和网络预测结果来确定目标的位置。实验表明,所提出算法的精度提升了2.10%,在有遮挡或相似目标等情况下仍具有较好的跟踪性能。  相似文献   

12.
精确的飞机检测与追踪方法可以有助于提升我国军事实力,但是目前对小目标飞机进行有效追踪方法较少。基于深度学习的目标追踪方法较传统的方法性能更佳优越,因此针对传统方法对于小目标追踪性能不佳,本文提出了一种基于YOLOv3以及卡尔曼滤波器的飞机追踪方法以获得更好的追踪性能,该算法首先通过改进的YOLOv3算法对视频中的图像进行检测,在识别到视频中的飞机之后,通过卡尔曼滤波器对飞机的运动轨迹进行预测,并通过匈牙利算法进行数据关联。实验结果显示,该算法对小尺度飞机的检测性能较传统的YOLOv3有接近5%的提升,且对飞机的追踪效果精度高且实时性能,具有较高的军事应用价值。  相似文献   

13.
红外弱小目标检测技术是红外探测系统的核心技术之一。针对远距离复杂场景下红外弱小目标对比度低、信噪比低和纹理特征稀疏分散导致目标检测率低的问题,提出一种融合注意力机制和改进YOLOv3的红外弱小目标检测算法。首先,在YOLOv3的基础上,用更大尺度的检测头替换最小尺度的检测头,在保证推理速度的基础上有效提升了红外图像中小目标的检测概率。然后,在检测头之前设计了Infrared Attention模块,通过通道间的信息交互,抽取出更加关键重要的信息供网络学习。最后,用完全交并比损失(Complete IoU Loss)替代交并比损失(Intersection over Union Loss)来衡量预测框的检测能力,通过梯度回传实现更好的模型训练。实验结果表明,提出的YOLOv3-DCA能完成多种场景下红外弱小目标的检测任务,且检测准确率、召回率、F1和平均准确率分别达到91.8%、88.8%、93.0%和88.8%,平均准确率比YOLOv3基线提升约7%,与主流的SSD、CenterNet和YOLOv4模型对比平均准确率也取得了目前最优。  相似文献   

14.
针对红外图像的特点,提出了一种YOLOv5-IF算法,采用基于残差机制的特征提取网络,实现了不同特征层之间信息的高效交互,能够得到更丰富的目标语义信息。通过改进YOLOv5的检测方案,增加更大尺度的检测头,有效提升了红外图像中小目标的检测概率。针对计算平台资源有限、算法实时性要求高等问题,设计了Detection Block模块,并由此构建了特征整合网络,该模块不仅能提升算法检测精度,还可有效缩减模型参数量。在FLIR红外自动驾驶数据集上,该算法的平均准确率(mAP)为74%,参数量仅19.5MB,优于现有算法。  相似文献   

15.
本文针对无人机航拍目标检测技术中目标聚集、目标较小及实时性差等问题,将YOLO V5的主干架构进行改进,简化Neck网络,提出了一种提高检测速度又能准确识别的无人机航拍图像检测技术方案。经过仿真实验测试,改进后的YOLO V5网络在保持识别精度的同时,检测速率提升了31%,满足无人机在航拍作业时对于准确性与实时性的要求。  相似文献   

16.
针对飞行器非线性系统执行器故障,利用RBF神经网络和自适应控制律,提出了基于自适应神经网络的故障重构和容错控制方法。设计了自适应神经网络观测器,利用神经网络逼近故障,引入调节因子,设计自适应律以在线调整神经网络权重向量和中心向量。构造自适应神经网络控制器,结合神经网络设计补偿控制输入。利用Lyapunov稳定性定理证明了所提方法可以实现系统渐近稳定。仿真实验结果验证了所提的方法对故障系统具有良好的观测性能、控制精度和响应速度。  相似文献   

17.
针对基体位置及姿态均不受控的自由漂浮柔性空间机器人轨迹跟踪问题,提出了一种前馈多层感知器(MLP)神经网络控制策略.建立了末端柔性的自由漂浮基机器人的耦合动力学模型,再利用MLP神经网络良好的逼近能力来自适应补偿非线性柔性臂的逆动力学模型,其误差代价函数由PID控制器提供,权重及阀值的调整采用改进的BP反传算法.最后通过仿真比较详细分析了所提方案的工作机理及对非线性强耦合系统控制的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号