首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
Numerical simulations are performed to investigate the effects of synthetic jet control on separation and stall over rotor airfoils. The preconditioned and unsteady Reynolds-averaged Navier–Stokes equations coupled with a k x shear stream transport turbulence model are employed to accomplish the flowfield simulation of rotor airfoils under jet control. Additionally,a velocity boundary condition modeled by a sinusoidal function is developed to fulfill the perturbation effect of periodic jets. The validity of the present CFD procedure is evaluated by the simulated results of an isolated synthetic jet and the jet control case for airfoil NACA0015. Then, parametric analyses are conducted specifically for an OA213 rotor airfoil to investigate the effects of jet parameters(forcing frequency, jet location and momentum coefficient, jet direction, and distribution of jet arrays) on the control effect of the aerodynamic characteristics of a rotor airfoil. Preliminary results indicate that the efficiency of jet control can be improved with specific frequencies(the best lift-drag ratio at F+= 2.0) and jet angles(40 or 75) when the jets are located near the separation point of the rotor airfoil. Furthermore, as a result of a suitable combination of jet arrays, the lift coefficient of the airfoil can be improved by nearly 100%, and the corresponding drag coefficient decreased by26.5% in comparison with the single point control case.  相似文献   

2.
A numerical investigation on jet interaction in supersonic laminar flow with a compres- sion ramp is performed utilizing the AUSMDV scheme and a parallel solver. Several parameters dominating the interference flowfield are studied after defining the relative increment of normal force and the jet amplification factor as the evaluation criterion of jet control performance. The computational results show that most features of the interaction flowfield between the transverse jet and the ramp are similar to those between a jet and a flat plate, except that the flow structures are more complicated and the low-pressure region behind the jet is less extensive. The relative force increment and the jet amplification factor both increase with the distance between the jet and the ramp shortening till quintuple jet diameters. Inconspicuous difference is observed between the jet-before-ramp and jet-on-ramp cases. The variation of the injection angle changes the extent of the separation region, the plateau pressure, and the peak pressure near the jet. In the present computational conditions, 120 is indicated relatively optimal among all the injection angles studied. For cold gas simulations, although little influence of the jet temperature on the pressure distribution near the jet is observed under the computation model and the flow parameters studied, reducing jet temperature somehow benefits the improvement of the normal force and the jet efficiency. When the pressure ratio of jet to freestream is fixed, the relative force increment varies little when increasing the freestream Mach number, while the jet amplification factor increases.  相似文献   

3.
《中国航空学报》2016,(2):346-357
A promising strategy of synthetic jet arrays(SJA) control for NACA0021 airfoil in preventing flow separation and delaying stall is investigated. Through aerodynamic forces, flowfield and velocity profiles measurements, it indicates that the synthetic jet(SJ) could enlarge the mixing of the shear layer and then enhance the stability of boundary layer, resulting in scope reduction of the flow separation zone. Furthermore, the control effects of dual jet arrays positioned at 15%c(Actuator 1) and 40%c(Actuator 2) respectively are systematically investigated with different jet parameters, such as two typical relative phase angles and various incline angles of the jet. The jet closer to the leading edge of airfoil is more advantageous in delaying the stall of airfoil, and overall,the flow control performances of jet arrays are better than those of single actuator. At the angle of attack(Ao A) just approaching and larger than the stall Ao A, jet array with 180° phase difference could increase the lift coefficient more significantly and prevent flow separation. When momentum coefficient of the jet arrays is small, a larger jet angle of Actuator 2 is more effective in improving the maximum lift coefficient of airfoil. With a larger momentum coefficient of jet array, a smaller jet angle of Actuator 2 is more effective.  相似文献   

4.
The wheel brake system of an aircraft is the key to ensure its safe landing and rejected takeoff. A wheel’s slip state is determined by the brake torque and ground adhesion torque, both of which have a large degree of uncertainty. It is this nature that brings upon the challenge of obtaining high deceleration rate for aircraft brake control. To overcome the disturbances caused by the above uncertainties, a braking control law is designed, which consists of two parts: runway surface recognition a...  相似文献   

5.
《中国航空学报》2016,(3):617-629
The efficiency and mechanism of an active control device ‘‘Spark Jet" and its application in shock-induced separation control are studied using large-eddy simulation in this paper.The base flow is the interaction of an oblique shock-wave generated by 8° wedge and a spatially-developing Ma = 2.3 turbulent boundary layer.The Reynolds number based on the incoming flow property and the boundary layer displacement thickness at the impinging point without shock-wave is20000.The detailed numerical approaches were presented.The inflow turbulence was generated using the digital filter method to avoid artificial temporal or streamwise periodicity.The numerical results including velocity profile,Reynolds stress profile,skin friction,and wall pressure were systematically validated against the available wind tunnel particle image velocimetry(PIV) measurements of the same flow condition.Further study on the control of flow separation due to the strong shock-viscous interaction using an active control actuator ‘‘Spark Jet" was conducted.The single-pulsed characteristic of the device was obtained and compared with the experiment.Both instantaneous and time-averaged flow fields have shown that the jet flow issuing from the actuator cavity enhances the flow mixing inside the boundary layer,making the boundary layer more resistant to flow separation.Skin friction coefficient distribution shows that the separation bubble length is reduced by about 35% with control exerted.  相似文献   

6.
Simulation of underexpanded supersonic jet flows with chemical reactions   总被引:1,自引:0,他引:1  
To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics(CFD) method.A program based on a total variation diminishing(TVD) methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier–Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.  相似文献   

7.
Numerical simulations were carried out to investigate the effects of synthetic jet actuation frequency on the separated flow in a diffusing S-duct. The Reynolds number based on the entrance height was 9.78×105. At first, the numerical model was validated with experimental data, and then, the interaction between the separated flow and the synthetic jets at different frequencies was discussed. The results demonstrate that the control effect is significantly dependent on the momentum mixing enhancement between inside of the separated boundary layer and the outer flow. There exists a narrow range of actuation frequency, in which effective separation control can be achieved using synthetic jets. A dimensionless frequency F+=1.0 is identified as the optimal frequency, with a momentum coefficient of 1.62×10-3, the separation area is reduced about 46%, and the aerodynamic performance of the S-duct is also greatly improved compared to uncontrolled case. Further analysis reveals that the choice of actuation frequency is mainly determined by the momentum flux produced by a single ejection and the spacing between adjacent ejections, the optimal frequency case can be understood as a balance between the two factors. In addition, it is found that the synthetic jets can also suppress the secondary flows while decreasing the separation.   相似文献   

8.
Aerodynamic parameters obtained from separation experiments of internal stores in a wind tunnel are significant in aircraft designs. Accurate wind tunnel tests can help to improve the release stability of the stores and in-flight safety of the aircrafts in supersonic environments.A simulative system for free drop experiments of internal stores based on a practical project is provided in this paper. The system contains a store release mechanism, a control system and an attitude measurement system. The release mechanism adopts a six-bar linkage driven by a cylinder, which ensures the release stability. The structure and initial aerodynamic parameters of the stores are also designed and adjusted. A high speed vision measurement system for high speed rolling targets is utilized to measure the pose parameters of the internal store models and an optimizing method for the coordinates of markers is presented based on a priori model. The experimental results show excellent repeatability of the system, and indicate that the position measurement precision is less than0.13 mm, and the attitude measurement precision for pitch and yaw angles is less than 0.126°, satisfying the requirements of practical wind tunnel tests. A separation experiment for the internal stores is also conducted in the FL-3 wind tunnel of China Aerodynamics Research Institute.  相似文献   

9.
The deviations of trajectory and attitude angle for internal store separation are evaluated by two wind tunnel test methods. One is the Freedrop Test(FDT), which is known as unsteady and time-dependent method of scaled model. The other is the Captive Trajectory System(CTS) test,which is usually regarded as a quasi-steady and time-averaged test technology. The result shows that there is a streamwise adverse pressure gradient on the cavity resulting in a nose-up pitching moment coefficient(>0) ...  相似文献   

10.
地面涡研究   总被引:1,自引:0,他引:1  
马申义 《航空学报》1989,10(5):293-296
 The formation mechanism and the flow characteristics of the ground vortices as well as the method of eliminating ground vortices are studied in this paper. It is noted that, when air is sucked into an aircraft engine, on the ground a momentum moment is exerted on a point sink flow by a lateral wind or a reversed jet from the tail pipe, resulting in the formation of eddy stream known as ground vortices. Through an analysis of numerous experimental data it is found that the ground vortices are composed of two vortices instead of a single and concentrated free vortex.The tangitial velocity distribution curves of the ground vortex can be expressed as two independent functions: one is a directly proportional function located at the core, and the other is an inversely proportional function around the outer surrounding. The pressure distribution is also composed of two parabolic functions.In addition, a method of eliminating the ground vortices is presented, and it is of important engineering significance to eliminate the ground vortices.  相似文献   

11.
赖江  赵忠良  王晓冰  李浩  李玉平 《航空学报》2019,40(10):122866-122866
为研究运动对横向喷流干扰特性的影响,数值模拟了导弹模型匀速俯仰运动过程的超声速横向喷流,获取了运动状态下的横向喷流干扰量,并对比分析了俯仰运动和角速率对喷口附近流场结构、模型表面极限流线、表面压力分布和子午线压力变化及气动特性和干扰放大因子造成的影响。结果表明:模拟参数范围内,动态及角速率影响随运动方向及迎角范围而发生变化;中小迎角时主要影响上游分离区和尾部偏折效应,大迎角时弓形激波位置变化显著;俯仰运动的气动特性和横向喷流干扰特性出现动态迟滞,且随角速率增加而增强;动态大迎角下由于压力平台效应减弱,其力矩放大因子受俯仰运动影响更为明显,出现偏离静态的不利结果。  相似文献   

12.
基于主动流动控制技术的无舵面飞翼布局飞行器姿态控制   总被引:2,自引:0,他引:2  
孙全兵  史志伟  耿玺  王力爽  张维源 《航空学报》2020,41(12):124080-124080
飞翼布局飞行器因其升阻比高、隐身性能好等诸多优势得到越来越广泛的应用,但是操纵舵面偏转会增加飞行器的雷达散射截面积。提出了采用射流环量控制和反向射流两种主动流动控制技术实现飞行器的无舵面飞行姿态控制。利用风洞测力试验对射流环量控制和反向射流的"舵效"进行了分析,结果表明环量控制技术能产生规律变化且可控的滚转和俯仰力矩、反向射流产生的偏航力矩随控制信号规律变化。飞行试验记录了飞行器姿态随射流激励器控制信号的变化规律,飞行数据表明俯仰环量控制激励器能有效地控制无人机的俯仰运动;无人机的横航向操纵存在耦合,但滚转环量控制激励器和反向射流能控制无人机的滚转和偏航运动。  相似文献   

13.
通过在2m×2m超声速风洞开展横向喷流静态测力和油流显示试验,获取了来流马赫数为1.5~4.0、迎角为-8°~27°、喷流静压比为5~17.6及不同喷口位置等参数对横向喷流干扰的影响规律,结合数值模拟获取了模型表面极限流线和喷口附近干扰流场结构,进而研究了导弹模型强迫运动下的横向喷流干扰特性。结果表明:在模拟参数范围内,位于导弹模型后体的横向喷流均产生有利干扰;来流马赫数越大,干扰放大因子随迎角变化越剧烈,静压比升高导致干扰放大因子减小,“单独向上喷流”干扰程度大于“单独向下喷流”;强迫运动条件下基本气动特性和干扰均出现动态迟滞,干扰放大因子尤其在大迎角和下俯过程中明显偏离固定迎角值,表明模型运动对横向喷流干扰特性影响较大。   相似文献   

14.
《中国航空学报》2021,34(3):61-70
In view of the separation form of the separator from the back of the carrier upward and from the side of the carrier outward, separation-safety research is carried out by taking the separation of a cluster munition as an example. In previous wind tunnel free-flight tests, the similarity law of vertical, downward, moving submunition was used to design submunitions at different positions in different initial-velocity directions, which resulted in large discrepancies between wind tunnel test results and real flight. In a wind tunnel test, each submunition has an independent time-reduction ratio with respect to the dispenser. Even if the separation trajectory of a single submunition is accurate, there will be errors in the position of each submunition at a given time. Therefore, it is necessary to determine the time-reduction ratio between submunitions, and to modify the test results later. In order to ensure the accuracy of wind tunnel test results, the similarity law of a free-flight test in a wind tunnel is derived in this paper. The time-correction scheme to ensure motion similarity between submunitions is solved. Numerical simulation is used to simulate the separation of a wind tunnel test and real aircraft, and the motion parameters of different submunitions are solved. The results show that the new similarity laws derived for different types of submunitions can greatly reduce the errors caused by previous similarity laws. In addition to the case for the separation of a cluster munition, the similarity law can also be applied to the free-flight test design of wind tunnels for vertical separation and horizontal separation of other kinds of aircraft.  相似文献   

15.
魏中成  王海峰  袁兵  李盈盈 《航空学报》2020,41(12):124434-124434
针对单发鸭式布局飞机,通过低速风洞试验,研究了矢量喷流对飞机大迎角气动力的影响特性。研究结果表明:发动机喷口直径变大使得飞机大迎角升力和阻力系数增加,并产生低头力矩系数。喷流使得飞机大迎角升力和阻力系数明显增加,并产生低头力矩系数;大喷口状态喷流影响比小喷口状态高50%左右。发动机喷管上/下偏转时,矢量喷流对飞机上下表面气流诱导不对称,喷管上偏减小升力和阻力系数、产生抬头力矩系数,喷管下偏增加升力和阻力系数、产生低头力矩系数,且喷管下偏影响明显比上偏大。在此基础上,基于数值模拟结果对喷流与飞机主流的相互作用机理进行了分析。  相似文献   

16.
《中国航空学报》2023,36(8):91-100
Aiming at the safety problem of the stage separation of parallel reusable high-speed air vehicles, this paper studies the unsteady test method and focuses on deriving a similarity law of parallel stage separation free-flight wind tunnel tests. The new similarity law considers the influences of aerodynamic force and gravity on the motions of the two stages, as well as the influence of aerodynamic interference between the two stages on each other’s motion. From the perspective of multi-angle physical equations, the conditions to ensure that the two-stage separation trajectory of a wind tunnel test is similar to that of a real air vehicle are derived innovatively, so as to ensure the authenticity and credibility of wind tunnel test results. The similarity law is verified by an HIFiRE-5 air vehicle, and the separation trajectories of wind tunnel tests and the real air vehicle are obtained by numerical simulation. The research shows that the similarity law derived in this paper can ensure that wind tunnel free-flight tests have the ability to predict the two-stage separation characteristics of real parallel vehicles. By analyzing the separation trajectory curve of the typical state, it is found that the new method can ensure that the trajectory error of a wind tunnel test does not exceed 1%, which indicates that this method is credible. The establishment of the new method lays the foundation for subsequent wind tunnel tests and provides support for research on the safety of the stage separation of parallel reusable air vehicles.  相似文献   

17.
内埋武器舱关键气动及声学问题研究   总被引:1,自引:0,他引:1  
以风洞试验为手段,在高速风洞中对内埋武器舱关键气动问题进行了深入研究。利用静态压力测量、脉动压力测量、网格测力等测试手段,获取了典型弹舱流场静压分布特性、气动声学特性以及武器分离特性。研究结果表明:舱内静压分布变化明显,可以此定义弹舱流场类型;开式弹舱流场气动声学环境恶劣,总声压级强度可达170dB 以上,且频谱曲线上存在多个明显的能量尖峰;武器从舱内分离过程中可能产生较大的抬头力矩,影响机/弹安全分离;在弹舱前缘施以流动控制能降低舱内静压梯度、抑制气动噪声,且有利于改善武器分离特性。  相似文献   

18.
宋威  张宁  朱剑  董垒  蒋增辉 《航空学报》2021,42(6):24417-024417
多体分离是航空、航天和武器系统总体部门一直极为关注的关键问题,多体间的流场干扰效应产生的气动力和力矩对悬挂物分离相容性有重要影响,基于运动动力学相似的风洞投放试验技术是预测和评估多体分离是否相容的一种非定常试验方法。根据飞行器多体分离相容性的研究需求,结合作者在风洞投放试验技术的研究成果和经验,对风洞投放试验技术的国内外研究现状进行综述。首先回顾了风洞投放试验技术的发展历史,然后对低速和高速风洞投放试验的相似准则及缩比关系进行详细地论述与分析,进而对风洞投放试验的几个关键技术进行综述,最后对风洞投放试验技术存在的问题提出思考与展望。  相似文献   

19.
升力体飞行器尾喷流模拟气动力试验方法研究   总被引:2,自引:0,他引:2  
尾喷流对升力体高超声速飞行器的气动特性影响显著,风洞喷流模拟测力试验是研究升力体飞行器尾喷流干扰效应的重要手段。在尾喷流模拟气动力试验中,选取恰当的喷流模拟参数,以及克服喷流供气管路对天平测力的干扰以提高测量精准度,是需要解决的关键技术。在 CARDC 的Ф1米高超声速风洞中,研究了采用冷喷流模拟、飞行器整体模型测力的升力体飞行器尾喷流模拟测力试验方法。通过优化模型结构设计、选用小干扰的喷管分断缝隙密封措施,解决了带尾喷流模拟条件下的升力体飞行器气动力精确测量问题,提高了带喷流气动力试验数据精度,接近常规气动力试验的水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号