首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 62 毫秒
1.
介绍了一种无人机电视制导过程中获得的彩色图像序列光流场检测与定位技术,旨在利用特征点相关法进行匹配,同时给出了具体的匹配策略和试验结果。  相似文献   

2.
刘芳  韩笑 《航空学报》2022,43(5):471-482
无人机已经被广泛应用到各个领域,目标检测成为无人机视觉领域关键技术之一。针对无人机图像中场景复杂、尺度多变、小目标丰富等问题,提出了一种基于多尺度深度学习的自适应航拍目标检测算法。首先,构建自适应特征提取网络MSDarkNet-53,引入多尺度卷积方式,采用不同类型卷积核对不同尺寸目标进行运算,有效扩大感受野。其次,结合注意力机制的优点设计卷积模块,自适应优化特征权重,增强有效特征,抑制无效特征,得到表征能力更强的特征。最后,构建基于多尺度特征融合的预测网络,根据小目标的特点,选取多层级特征映射融合成高分辨率特征图,在单一尺度上进行目标分类和边界框回归。实验表明:本文算法提升了无人机图像的目标检测精度,具有良好的鲁棒性。  相似文献   

3.
目标跟踪在自动驾驶和智能监控系统等实时视觉应用中发挥着重要作用。在遮挡、相似干扰等情况下,传统的基于相关滤波的跟踪算法容易发生漂移,鲁棒性有待进一步提高。基于此,提出了一种扩展特征描述的检测辅助核相关滤波目标跟踪架构。首先,在传统的核相关滤波目标跟踪算法的基础上,通过目标检测辅助对跟踪结果进行质量判断,实现对遮挡以及目标丢失的判别;然后通过拓展特征模板的构建与匹配,实现抗干扰相似目标判断及目标重定位;最终,以行人跟踪为例进行了试验,分别通过OTB数据及验证试验和移动机器人平台视觉跟踪验证试验,验证了算法的可行性,并对算法的跟踪性能进行了测试。试验结果表明,所提方法能够稳定地跟踪移动目标,对遮挡、相似干扰具有较强的鲁棒性。  相似文献   

4.
随着无人机航拍的数据采集愈加便捷,以无人机为平台的多目标检测与跟踪技术发展迅速,在智慧城市、环境监测、地质探测、精准农业和灾害预警等民用和军事领域有着广泛的应用前景,近年来深度学习的突飞猛进也为其提供了多种更为有效的解决思路。然而,无人机视角下目标外观发生突变、目标区域被严重遮挡以及目标消失和重现等挑战性的问题尚未完全解决。综述了基于深度学习的无人机航拍视频多目标检测与跟踪算法,总结了该领域的最新进展,包括多目标检测、多目标跟踪2个模块。多目标检测模块划分为双阶段与单阶段两个部分。对于多目标跟踪模块则依据基于检测的跟踪和联合检测的跟踪2个经典框架,分别阐述了2类算法的原理并分析其优缺点。随后对现有的公开数据集进行统计分析,并对基于无人机航拍视频的多目标检测与跟踪领域内标杆挑战赛VisDrone Challenge近年来的最优方案进行了对比分析。最后总结了无人机视角下多目标检测与跟踪亟待解决的问题并展望未来可能的研究方向,为后续相关研究的人员提供参考。  相似文献   

5.
图像序列中机动目标三维运动和结构的计算   总被引:1,自引:0,他引:1  
综合视觉运动分析中的2类处理方法,选取图像中的角点作为特征点,在理论上证明了图像序列的光流场可以近似地用角点的位移场代替。利用已有文献中的建模思想,详细推导出递归计算机动目标三维运动和结构的非线性计算模型,采用广义卡尔曼滤波(EKF)递归地计算图像序列中机动目标的三维运动和结构。合成图像序列和真实图像序列实验结果表明该算法能取得较好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号