共查询到10条相似文献,搜索用时 15 毫秒
1.
2.
脉冲吹气对无缝襟翼翼型气动性能的影响 总被引:1,自引:0,他引:1
只有采用足够小的能量输入,获取更大的空气动力收益后,主动流动控制才有可能在真实飞机上获得更广泛的应用。脉冲吹气比定常吹气所需能量更少,控制效果更好,在改善翼型气动性能上得到广泛的研究。数值模拟了脉冲频率、占空比、动量系数等参数对无缝襟翼翼型升阻特性的影响规律,研究表明,脉冲频率接近于涡脱落频率时增升效果最好,当脉冲频率小于涡脱落频率时,阻力增加,当脉冲频率为涡脱落频率2倍时,阻力减小最多;动量系数较小时,占空比越小,冲击效应越强,增升效果越好;动量系数小于临界动量系数时,脉冲吹气增升效果优于定常吹气,当动量系数大于临界动量系数时,脉冲吹气控制效果低于定常吹气。研究脉冲吹气参数对翼型性能的影响规律,对采用周期性激励增升减阻、舵面增效的飞行器设计具有一定参考意义。 相似文献
4.
5.
7.
为了探索尾部吹气控制对城市轨道交通列车气动阻力的影响,采用基于Realizable k-ε两方程模型的DDES方法模拟列车明线运行时的车身周围流场结构,分析了在尾车不同位置施加吹气控制,以及不同吹气速度的影响规律,并通过风洞试验结果验证了文章选用的数值模拟方法。研究结果表明:压差阻力是列车阻力的重要来源,约占总阻力的80.1%,摩擦阻力占比约为19.9%;列车尾车设置吹气控制可显著减小列车气动阻力,且对列车压差阻力的影响远大于摩擦阻力;不同吹气方案下,尾车减阻效果最显著,其次是中间车,最高减阻率分别为27.6%和 4.6%;分离点区域压力和流向涡强度是影响列车阻力的重要因素,吹气边界靠近流向涡涡核时可弱化流向涡强度,特定吹气边界控制下列车尾车压差阻力的减阻率高达31.9%;列车气动减阻率随吹气速度增大而增大,当吹气速度由0.2U增大至0.4U时,整车气动减阻率由7.9%增大至12.2%,继续增大至0.6U气动减阻效果减弱,整车减阻率增大至12.9%;集中吹气点通过改变吹气方向与壁面切线方向的夹角来控制尾流结构,当集中吹气点从距尾车鼻尖点1.5 m增大至5.0 m时,列车气动减阻率由12.9%减小至11.3%。 相似文献
8.