首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper presents a summary of results from two different simulations which study the tearing, coalescence and fragmentation of current sheets, the associated production of energetic electrons and of plasma waves from these electrons which could explain drifting pulsation structures observed at radio wavelengths. Using a 2.5-D particle-in-cell (PIC) model of the current sheet it is shown that due to the tearing mode instability the current sheet tears into plasmoids and these plasmoids later on coalesce into larger ones. During these processes electrons are accelerated and they produce observable electromagnetic waves. Furthermore, the 3-D PIC model with two current sheets extended in the electric current direction shows their fast fragmentation associated with the exponential dissipation of the free magnetic field energy. An example of the drifting pulsating structure which is considered to be a radio signature of the above mentioned processes in solar flares is shown.  相似文献   

2.
The issue of predicting solar flares is one of the most fundamental in physics, addressing issues of plasma physics, high-energy physics, and modelling of complex systems. It also poses societal consequences, with our ever-increasing need for accurate space weather forecasts. Solar flares arise naturally as a competition between an input (flux emergence and rearrangement) in the photosphere and an output (electrical current build up and resistive dissipation) in the corona. Although initially localised, this redistribution affects neighbouring regions and an avalanche occurs resulting in large scale eruptions of plasma, particles, and magnetic field. As flares are powered from the stressed field rooted in the photosphere, a study of the photospheric magnetic complexity can be used to both predict activity and understand the physics of the magnetic field. The magnetic energy spectrum and multifractal spectrum are highlighted as two possible approaches to this.  相似文献   

3.
We present here a study of Solar Energetic Particle Events (SEPs) associated with solar flares during 2010–2014 in solar cycle 24. We have selected the flare events (≥GOES M-class), which produced SEPs. The SEPs are classified into three categories i.e. weak (proton intensity?≤?1?pfu), minor (1?pfu?<?proton intensity?<?10?pfu) and major (proton intensity?≥?10?pfu). We used the GOES data for the SEP events which have intensity greater than one pfu and SOHO/ERNE data for the SEP event less than one pfu intensity. In addition to the flare and SEP properties, we have also discussed different properties of associated CMEs.  相似文献   

4.
A coronal explosion is a density wave observed in X-ray images of solar flares. The wave occurs at the end of the impulsive phase, which is the time at which the flare's thermal energy content has reached its maximum value. It starts in a small area from where it spreads out, mainly into one hemisphere, with velocities that tend to rapidly decrease with time, and which are between ~ 103 and a few tens of km s?1. We interpret them as magneto-hydrodynamic waves that (mainly) move downward from the low corona into denser regions.  相似文献   

5.
Emergence of complex magnetic flux in the solar active regions lead to several observational effects such as a change in sunspot area and flux embalance in photospheric magnetograms. The flux emergence also results in twisted magnetic field lines that add to free energy content. The magnetic field configuration of these active regions relax to near potential-field configuration after energy release through solar flares and coronal mass ejections. In this paper, we study the relation of flare productivity of active regions with their evolution of magnetic flux emergence, flux imbalance and free energy content. We use the sunspot area and number for flux emergence study as they contain most of the concentrated magnetic flux in the active region. The magnetic flux imbalance and the free energy are estimated using the HMI/SDO magnetograms and Virial theorem method. We find that the active regions that undergo large changes in sunspot area are most flare productive. The active regions become flary when the free energy content exceeds 50% of the total energy. Although, the flary active regions show magnetic flux imbalance, it is hard to predict flare activity based on this parameter alone.  相似文献   

6.
The 2D MHD model of the flare magnetic reconnection shows that a reconnection activity, changes of the magnetic field topology and generation of waves are connected. It is found that after the phase of a quasi-stationary reconnection in the extended current sheet above the flare arcade the tearing mode instability produces the plasmoids which then can interact and generate MHD waves. Results of particle-in-cell simulations of the tearing processes, which accelerate electrons, are mentioned. Then all these processes are discussed from the point of view of possible radio emissions. While shocks can contribute to the type II radio burst, the superthermal electrons trapped in plasmoids can generate so called drifting pulsating structures. Furthermore, regions with the MHD turbulence may manifest themselves as the lace or dm-spike bursts.  相似文献   

7.
Two successive solar energetic particle (SEP) events associated with fast and wide coronal mass ejections (CMEs) on 2001 April 14 and 15 are compared. The weak SEP event of April 14 associated with an 830 km/s CME and an M1.0 flare was the largest impulsive event of cycle 23. The April 15 event, the largest ground level event of cycle 23, was three orders of magnitude more intense than the April 14th event and was associated with a faster CME (1200 km/s) and an X14.4 flare. We compiled and compared all the activities (flares, CMEs, interplanetary conditions and radio bursts) associated with the two SEP events to understand the intensity difference between them. Different coronal and interplanetary environments of the two events (presence of preceding CME and seed particles ahead of the April 15 event) may explain the intensity difference.  相似文献   

8.
Numerical simulations of two types of flares indicate that magnetic reconnection can provide environments favorable for various particle acceleration mechanisms to work. This paper reviews recent test particle simulations of DC electric field mechanism, and discusses how the flare particles can escape into the interplanetary space under different magnetic configurations.  相似文献   

9.
Changes in the structure of the sunspot group and its magnetic field are studied in Hale Region 17644 (May 1981) in connection with the May 16 3B/X1 flare. The characteristic changes, also found in HR 16850 (May 1980) and HR 17098 (September 1980), are the following: Rapid motions of umbrae of opposite polarity in the vicinity of the magnetic zero line, parallel to this line, but in opposite direction. Appearence of new small spots before the flare, leading to a more complicated field structure. Simplification of the magnetic structure after the flare in some days, i.e. decrease of spot areas in the affected territory and the straightening of the magnetic zero line.  相似文献   

10.
Coronal spectroscopy has pushed forward the understanding of physical processes in all phenomena on the Sun. In this review we concentrate specifically on plasma parameters measured in sources of the slow solar wind in active regions and the early phases of solar flares. These topics are a key part of the science goals of the Solar Orbiter mission (Müller et al., 2020) which has been designed to probe what drives the solar wind and solar transients that fill the heliosphere.Active regions, outside of flaring, have general characteristics that include closed loops showing red-shifted (down-flowing plasma), and the edges of the active regions showing blue-shifted (upflowing plasma). Constraining and understanding the evolution, behaviour and cause of the flows has been developed in the past years and are summarised. Of particular importance is the upflowing plasma which, in some cases, can contribute to the slow solar wind, and this review concentrates on recent results on this topic.The early phases of solar flares and their energy sources are not yet fully understood. For decades, there has been a huge interest in pin-pointing the trigger of a solar flare. Coronal spectroscopy has revealed small-scale dynamics that occurs tens of minutes before the flare begins. The understanding of the trigger is key to improving flare predictions in the future, as well as understanding the physical processes.Finally we look to the future of coronal spectroscopy, with new instruments and methodologies being developed that build on the current knowledge, and will improve significantly our physical understanding of processes at all scales on the Sun.  相似文献   

11.
Both the X8.3 flare of 2 November 2003 and the X17.2 flare of 28 October 2003 are strong γ-ray line flares. The Reuven Ramaty High Energy Solar Spectroscopic Imager observed the former flare in a relatively complete time coverage, and the latter one from the maximum phase. The time integrated spectra up to 7 MeV have been fitted with a model of multi-components, including the bremsstrahlung, the annihilation line, neutron–proton capturing line, several narrow nuclear lines as well as the broad lines. Based on the fitted data, we discuss the spectral index of accelerated ions, the formation region of the annihilation line, the directionality of accelerated ions, and the abundance of ambient medium. We found that the annihilation region might be at the lower atmosphere for the November 2 event. It is also shown that the abundance of Ne/O tends to be of 0.15 rather than 0.25, and that energetic α/p tends to be within 0.01–0.1 but not bigger than 0.1. The redshifts of the lines seem to support the downward angular distribution of accelerated ions.  相似文献   

12.
The count rate temporal profiles and energy spectra of the solar flares January 15, 17, 20 2005 in hard X-ray and gamma energy bands by data of AVS-F apparatus onboard CORONAS-F satellite are discussed. The energy spectra of these solar flares contain positron line and neutron capture line. Solar flares of January 17 and 20 spectra also contain some nuclear lines. Thin structure with characteristic timescales of 33–92 s is presented on flares temporal profiles in energy bands corresponding to the observed spectral features, which are confirmed by periodogram analysis (confidence level is 99%).  相似文献   

13.
The energy content of nonthermal particles in solar flares is shared between accelerated electrons and ions. It isimportant for understanding the particle acceleration mechanism in solar flares. Yohkoh observed a few intense flares which produced both strong gamma-ray lines and electron bremsstrahlung continuum. We analyze energy spectra of X-class solar flares on October 27, 1991(X6.1), November 6, 1997 (X9.4), July 14, 2000 (X5.7) and November 24, 2000 (X2.3). The accelerated electron and proton spectra are derived from a spectral analysis of their high-energy photon emission and the energy contents in >1 MeV electrons and >10 MeV protons are estimated to be 6×l028 – 4×1030 and 2×1028 – 5×1029 erg, respectively. We study the flare to flare variation in the energy content of >1 MeV electrons and >10 MeV protons for the four Yohkoh gamma-ray flares. Ratios of >1 MeV electron energy content to >10 MeV proton energy content are roughly within an order of magnitude.  相似文献   

14.
Using the Yohkoh Hard X-Ray Telescope (HXT) data, we have examined motions of the hard X-ray (HXR) sources during 72 solar flares occurred from 1991 September to 2001 December. In these flares, we have found 198 intense sources that are presumably the chromospheric footpoints (FPs) of flare loops. The average velocity V and the velocity dispersion σ were determined by a linear regression for these sources. For 80% of them, the ratio of V to 3σ is larger than 1, strongly suggesting that the regular motions of the HXR sources dominate their chaotic motions.For 43 of 72 flares, coalignment of the HXT images with the photospheric magnetograms allows us to consider the HXR sources located on the both sides of the photospheric neutral line (NL) as the FP sources, and to distinguish between three main types of the FP motions. The type I is the motions of the HXR sources preferentially away from and nearly perpendicular to the NL. Less than 5% of the flares show this pattern of motion. In the type II, the sources move mainly along the NL in anti-parallel directions. Such motions have been found in 26% of flares. The type III involves a similar pattern of motions as the type II but all the HXR sources move in the same direction along the NL. Flares of this type constitute 30% of the flares. About 19% of flares can be described as a combination of these basic types. The remaining 20% of flares seem to be more complicated or less regular in the motion scale under consideration. An interpretation of results is suggested.  相似文献   

15.
Using ground-based magnetometer data of the April 6–7, 2000, superstorm, we obtained maps of ionospheric and field-aligned currents (FACs). Based on these, we deduced the electrical circuit of the disturbed magnetosphere/ionosphere and a conceptual model of its magnetospheric generators, which supply both hemispheres. This model implies that the generator system creates primarily the Region-1 FACs of Iijima and Potemra at both hemispheres, while the Region-2 and Region-0 FACs form by spreading of the Region-1 currents through the ionosphere. This conclusion is supported by observations.  相似文献   

16.
An analysis of D-region electron density height profile variations, induced by four isolated solar X-ray flares during period from September 2005 to December 2006, based on the amplitude and the phase delay perturbation of 22.1 kHz signal trace from Skelton (54.72 N, 2.88 W) to Belgrade (44.85 N, 20.38 E), coded GQD, was carried out. Solar flare data were taken from NOAA GOES12 satellite one-minute listings. For VLF data acquisition and recordings at the Institute of Physics, Belgrade, Serbia, the AbsPAL system was used. Starting from LWPCv21 code (Ferguson, 1998), the variations of the Earth-ionosphere waveguide characteristic parameters, sharpness and reflection height, were estimated during the flare conditions. It was found that solar flare events affected the VLF wave propagation in the Earth-ionosphere waveguide by changing the lower ionosphere electron density height profile, in a different way, for different solar flare events.  相似文献   

17.
The maximum entropy formalism and dimensional analysis are used to derive a power-law spectrum of accelerated electrons in impulsive solar flares, where the particles can contain a significant fraction of the total flare energy. Entropy considerations are used to derive a power-law spectrum for a particle distribution characterised by its order of magnitude of energy. The derivation extends an earlier one-dimensional argument to the case of an isotropic three-dimensional particle distribution. Dimensional arguments employ the idea that the spectrum should reflect a balance between the processes of energy input into the corona and energy dissipation in solar flares. The governing parameters are suggested on theoretical grounds and shown to be consistent with solar flare observations. The flare electron flux, differential in the non-relativistic electron kinetic energy E, is predicted to scale as E-3. This scaling is in agreement with RHESSI measurements of the hard X-ray flux that is generated by deka-keV electrons, accelerated in intense solar flares.  相似文献   

18.
The ionic charge states of helium, carbon, oxygen, and iron have been determined for three solar particle enhancements by an electrostatic deflection analyzer, which is combined with a thin window proportional counter dE/dX vs. E system. The observations are obtained during the periods September 23 to 29, 1978, June 6 to 8, 1979, and September 15 to 26, 1979, with an instrument onboard the ISEE-3 spacecraft. The mean ionic charge states for He, C, and oxygen exhibit a high degree of ionization with values of Q = 2, 6, and 7.2, respectively. The charge state of iron is near 13 charge units. Variations from flare to flare and within the September 23, 1978 flare are small. The most surprising feature of the charge state measurement is the observation of a small (~10%) but finite contribution of singly ionized helium.  相似文献   

19.
The presence of a solar active region affects the luminosity of the sun. Sunspots directly produce “dips” in the total solar irradiance approximately proportionally to their projected area, while faculae produce excess energy. These effects were discovered during the solar maximum period of 1980, and in this paper we examine the sunspot effect during solar minimum. We examine the “dip” due to an active region in April, 1985, as observed in the total solar irradiance by the ACRIM instrument on the Solar Maximum Mission. These data (obtained after the spacecraft repair in May, 1984) have simple variations, relative to those observed in 1980, because of the reduced level of activity approaching solar minimum. We find that the PSI index of projected sunspot area as defined in 1980 appears to describe this “dip” satisfactorily.  相似文献   

20.
Experiments on SMM, GAMMA, Yohkoh, GRANAT, Compton GRO, INTEGRAL, RHESSI and CORONAS-F satellites over the past three decades have provided copious data for fundamental research relating to particle acceleration, transport and energetics of flares and to the ambient abundance of the solar corona, chromosphere and photosphere. We summarize main results of solar gamma-astronomy (including some results of several joint Russian–Chinese projects) and try to appraise critically a real contribution of those results into modern understanding of solar flares, particle acceleration at the Sun and some properties of the solar atmosphere. Recent findings based on the RHESSI, INTEGRAL and CORONAS-F measurements (source locations, spectrum peculiarities, 3He abundance etc.) are especially discussed. Some unusual features of extreme solar events (e.g., 28 October 2003 and 20 January 2005) have been found in gamma-ray production and generation of relativistic particles (solar cosmic rays, or SCR). A number of different plausible assumptions are considered concerning the details of underlying physical processes during large flares: (1) existence of a steeper distribution of surrounding medium density as compared to a standard astrophysical model (HSRA) for the solar atmosphere; (2) enhanced content of the 3He isotope; (3) formation of magnetic trap with specific properties; (4) prevailing non-uniform (e.g., fan-like) velocity (angular) distributions of secondary neutrons, etc. It is emphasized that real progress in this field may be achieved only by combination of gamma-ray data in different energy ranges with multi-wave and energetic particle observations during the same event. We especially note several promising lines for the further studies: (1) resonant acceleration of the 3He ions in the corona; (2) timing of the flare evolution by gamma-ray fluxes in energy range above 90 MeV; (3) separation of gamma-ray fluxes from different sources at/near the Sun (e.g., different acceleration sources/episodes during the same flare, contribution of energetic particles accelerated by the CME-driven shocks etc.); (4) asymmetric magnetic geometry and new magnetic topology models of the near-limb flares; (5) modeling of self-consistent time scenario of the event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号