首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to realize the operational and service cost savings through the use of rechargeable batteries, the dismounted soldier is burdened with the weight, volume and/or charging logistics of the batteries. By providing the soldier with a high energy density source and a lightweight compact battery charger, the burden imposed by rechargeable batteries in the forward field can be minimized. Zinc-air batteries have the potential for meeting the energy demands of forward battlefield charging. They are attitude insensitive, have a high specific energy and are inherently inexpensive, lightweight and safe  相似文献   

2.
Since they were first introduced in the early 1990s, lithium ion batteries have enjoyed unprecedented growth and success in the consumer marketplace. Combining excellent performance with affordability, they have become the product of choice for portable computers and cellular phones. Building on the same energy and life cycle attributes, which marked their consumer market success, but adding new high power storage capability, lithium ion technology is now poised to play a similar role in the transportation, military, and space sectors. With major program in various aspects of electric and hybrid electric vehicles, Saft has developed a family of battery products that address the power and energy storage where lightweight, long life, and excellent energy or power storage capabilities are needed. Significant progress in the packaging and control of high power, yet compact, batteries has been accomplished for a variety of vehicle applications. This paper discusses the charger and balancing strategies of one of this family of products  相似文献   

3.
A battery charger is described that uses an on-line microcontroller to maximize its output power. This is done by always operating at either the maximum allowable input current or the thermal limit imposed by the charger itself. In this case the thermal limit is determined by the junction temperatures of the two main insulated gate bipolar transistors (IGBTs). Since direct measurement of these temperatures is impractical, they must be calculated by a computer algorithm that uses various on-line measurements. Experimental results for an 8 kW charger indicate a reduction in the bulk charging time of about 26% when used with a set of NiFe batteries.  相似文献   

4.
提出了一种新型永磁驱动重构型车载充电机三相DC/DC变流器集成系统。该集成系统将永磁驱动的电机绕组和DC/AC逆变器重构成车载充电机实现电动汽车驱动-充电的集成,具有空间利用率高、充电快速和可靠性高等特点。分析了集成系统的结构和工作原理,推导了充电系统的三相DC/DC变换器数学模型。在此基础上,利用MATLAB/Simulink仿真软件搭建了驱动-充电集成系统仿真模型,对同步脉宽调制(PWM)控制和交错PWM控制策略进行仿真研究,分析对比了交流侧电压电流、直流侧电机绕组电感电流和直流侧电压波形。仿真结果表明,与交错PWM控制策略相比,同步PWM控制策略下该新型结构充电系统具有更好的运行性能。  相似文献   

5.
Slight differences between the series connected cells in a lithium ion (Lilon) battery pack can produce imbalances in the cell voltages, and this greatly reduces the charge capacity. These batteries cannot be trickle-charged like a lead acid battery since this would slightly overcharge some cells and may cause these cells to ignite. Therefore, an electronic equalizer (EQU) should be used to balance the cell voltages individually. The targeted EQU described herein can be connected to any cell via a set of sealed relays to provide much faster equalization and higher efficiency than previous methods.  相似文献   

6.
Lithium ion battery technology is being introduced into power supplies used by our armed forces for a variety of applications. In many cases, the same cells and design parameters that support commercial battery packs are being used in military battery packs. This approach is expected to result in a major decrease in the total life cycle cost of the equipment these batteries support. On June 13, 1991, NAVSEA issued INST9310.1B1, which states that all lithium battery powered equipment must undergo safety evaluation and approval prior to fleet use. This safety program governs a process whereby approvals are issued for lithium batteries to be used in specific equipment on ground facilities, surface combatants, air combatants, and/or submarines. The Naval Ordnance Safety and Security Activity (NOSSA) manages the program. The chief technical advisors are Code 644 at NSWC Carderock Division and Code 609A at NSWC Crane Division. This paper describes three battery designs that incorporate lithium ion technology, and the results of battery safety tests conducted in accordance with navy requirements.  相似文献   

7.
Thin-film rechargeable Li-LiMn2O4 batteries have been fabricated and characterized. Following deposition by electron beam evaporation of LiMn2O4, the amorphous as-deposited cathode films 1 cm2 in area by 0.3to 4-μm thick were annealed at 700°C to 800°C in oxygen in order to form the crystalline spinet phase. The specific capacity of the cells between 4.5 V to 3.8 V ranged from 50 μAh/mg to 120 μAh/mg. When cycled over this range, the batteries exhibited excellent secondary performance with capacity losses as low as 0.001% per cycle. On charging to 5.3 V, a plateau with a median voltage of 5.1 V was observed. The total charge extracted between 3.8 V to 5.3 V corresponded to about 1 Li/Mn2 O4  相似文献   

8.
Production Li-ion batteries include hardware and software safety protection. The hardware protection includes PTC (positive temperature coefficient) thermistor switch, electrical circuit disconnect and rupture vent. The software protection involves a charging algorithm (charging to ultimate voltage), which is used with internal electrical circuitry (cell voltage control and equalization circuit). This paper discusses a specific charging algorithm and additional software protection features associated with hard, soft and chemical shunt recognition  相似文献   

9.
应用电瓶最佳受电原理,对常用飞机碱性电瓶的充电方式进行了分析和比较,提出了脉冲恒流二阶段充电法是电瓶的最佳充电方法之一的设想,其可行性已被试验证实。利用该充电方法,研制成了飞机碱性电瓶专用充电器.实验结果表明该充电方法能大大提高电瓶的充电效率,延长电瓶的使用寿命。  相似文献   

10.
The introduction of a 36V battery along side of the 12V battery will enhance starting reliability, but it also creates new risks and, therefore, a strategy for jump start is needed. This paper discusses the issues that must be addressed with respect to charging and jump starting the batteries in the 42V/14V dual voltage systems  相似文献   

11.
《中国航空学报》2020,33(5):1517-1531
As an emergency and auxiliary power source for aircraft, lithium (Li)-ion batteries are important components of aerospace power systems. The Remaining Useful Life (RUL) prediction of Li-ion batteries is a key technology to ensure the reliable operation of aviation power systems. Particle Filter (PF) is an effective method to predict the RUL of Li-ion batteries because of its uncertainty representation and management ability. However, there are problems that particle weights cannot be updated in the prediction stage and particles degradation. To settle these issues, an innovative technique of F-distribution PF and Kernel Smoothing (FPFKS) algorithm is proposed. In the prediction stage, the weights of the particles are dynamically updated by the F kernel instead of being fixed all the time. Meanwhile, a first-order independent Markov capacity degradation model is established. Moreover, the kernel smoothing algorithm is integrated into PF, so that the variance of the parameters of capacity degradation model keeps invariant. Experiments based on NASA battery data sets show that FPFKS can be excellently applied to RUL prediction of Li-ion batteries.  相似文献   

12.
Selective buck-boost equalizer for series battery packs   总被引:1,自引:0,他引:1  
To maximize the capacity and reliability of a series connected battery pack, a new selective equalizer developed from the earlier ramp equalizer is proposed. A set of bipolar junction transistors (BJTs) controlled by a microcontroller is used to route equalization current to the lowest voltage batteries. Since only the lowest voltage batteries are connected to the equalizer, the need for uniform transformer leakage inductance is avoided, and a lower power level can be used since no excess current flows to the other batteries. An equalization experiment has shown that a 37 W selective equalizer had a slightly better effect on a 24-battery pack than a 63 W ramp equalizer  相似文献   

13.
A summary of the Hubble Space Telescope (HST) nickel-hydrogen (NiH/sub 2/) battery performance from launch to the present. Over the life of HST vehicle configuration, charge system degradation and failures, together with thermal design limitations, have had a significant effect on the capacity of HST batteries. Changes made to the charge system configuration to protect against power system failures and to maintain battery thermal stability resulted in undercharging of the batteries. This undercharging resulted in decreased usable battery capacity as well as battery cell voltage/capacity divergence. This cell divergence was made evident during on-orbit battery capacity measurements by a relatively shallow slope of the discharge curve following the discharge knee. Early efforts to improve battery performance have been successful. On-orbit capacity measurement data indicates increases in the usable battery capacity of all six batteries as well as improvements in the battery cell voltage/capacity divergence. Additional measures have been implemented to improve battery performance, however, failures within the HST Power Control Unit (PCU) have prevented verification of battery status.  相似文献   

14.
A new approach to the design of lead acid batteries has been developed based on the use of very thin lead foil current collectors. The basic cell construction and the performance characteristics for the new cell are described. Spiral wrap cells based on this electrode concept exhibit extremely high power output with excellent capacity maintenance. Additionally, these cells exhibit very flat voltage at all currents, and are capable of very rapid recharge. Applications for this high power technology cover a broad spectrum such as portable power tools, UPS systems, electrically heated catalytic converters, military pulse power applications and electric and hybrid vehicles  相似文献   

15.
Lockheed Martin Missiles & Space (LMMS), Ultralife Batteries, Inc. (UBI), Eagle Picher Technologies, LLC (EPT), Sandia National Laboratories (SNL) and Rentech, Inc. (RTI) are developing lithium ion solid polymer electrolyte (Li-ion SPE) batteries. Under a new Advanced Technology Program (ATP), this team will develop new high-energy density cells and batteries for space and portable electronics applications. These new batteries will utilize new high-energy density anode and cathode active materials developed by SNL and RTI. UBI will incorporate these new materials into an optimized Li-ion SPE electrode laminate. EPT will develop batteries for aerospace applications based on this electrode laminate technology while LMMS will design the battery charge management controller and provide system expertise  相似文献   

16.
Since their development in the late 1980s, lithium rechargeable batteries have enjoyed rapid growth and wide use as a commodity battery known for its higher energy density storage and lightweight convenience. These same attributes are emerging as a strong platform in power source development for the medical and aerospace sectors with highly customized applications and narrowly defined criteria. Accordingly, this new generation of lithium rechargeables must be hermetically sealed, have long-term storage capability, and zero-fault tolerances for common causes of field failures such as electrolyte leakage or short circuits from mechanical deformation. Quallion has been developing and manufacturing highly reliable lithium rechargeable cells for medical, aerospace, and specialty applications. Summarized in this paper are some key technologies developed at Quallion for designing and manufacturing of this new class of lithium rechargeable batteries. They include: 1) leakage reliability; 2) self-extinguishing electrolyte system; 3) mechanical impact resistance; 4) deep discharge storage; and 5) high reliability manufacturing.  相似文献   

17.
The developments in batteries reported at the 8th Annual Battery Conference on Advances and Applications, are discussed. It was sponsored by the electrical engineering department of California state university, long beach, CA, with IEEE-AESS cooperation. Previous well-funded battery research had been directed toward getting low weight in spacecraft batteries, which had to be boosted into orbit with expensive rockets. Ni-H2 batteries, even though costly, won the race. Their demonstrated life, like 30,000 charge-discharge cycles, gives an earth-orbiting satellite decades of usable life. Other types of batteries discussed are: aircraft batteries; electric vehicle batteries; Ni-Cd cells; Zn-Br batteries; industrial Pb-acid batteries; rechargeability; computer controlled charging; and small rechargeable and primary batteries  相似文献   

18.
State-of-charge indication for a secondary battery is becoming increasingly important for battery-operated electronics. Consumers are demanding fast charging times, increased battery lifetime, and fuel gauge capabilities. All of these demands require that the state of charge within a battery be known. One of the simplest methods employed to determine state of charge is to monitor the voltage of the battery. However, this method alone is not a good indicator of battery energy, since both NiMH and NiCd batteries have voltage-versus-energy curves that are essentially flat. This paper presents a more effective method of determining the state of charge in secondary cell batteries. A NiMH battery is used as our test vehicle, since it is one of the more difficult batteries to determine state of charge. This method monitors the battery's temperature, voltage, and discharge/charge rate. A microcontroller then manipulates the information, using look-up tables to determine the state of charge. Also, by modifying the look-up tables, this technique can be employed in many other battery technologies and is not limited to NiMH  相似文献   

19.
The Hubble Space Telescope was deployed from the Space Shuttle Discovery into a 380-mile high Earth orbit on April 25, 1990. It subsequently made outstanding astronomical discoveries with its 8-foot (2.4-meter) telescope and other scientific instruments. Critical to the successful observations was continuous availability of power from its solar arrays during sunlit periods, and from nickel-hydrogen batteries when the satellite was in the Earth's shadow. The adopted nickel-hydrogen batteries were carefully selected and tested to confirm their depth-of-discharge and operating temperature that delivered the longest life in charge/discharge cycling service. These batteries had a design life of 7 years. At 12 years after launch the Hubble batteries have delivered more charge/discharge cycles than any other batteries in low-Earth orbit. However, the Hubble batteries have been subjected to many unexpected stresses, and peculiar reductions in battery capacity have been observed. Battery replacement requires a costly trip to the Hubble Space Telescope by astronauts, so the remaining useful life of the batteries must be predicted. Already in four servicing missions, astronauts have replaced or modified optics, solar arrays, a power control unit, and various science packages. A fifth servicing mission is scheduled in 2004. This paper discusses battery charging hardware and software controls, history of battery events in Hubble, cell performance model and spare battery tests, and capacity walkdown.  相似文献   

20.
Nickel cadmium cells have almost doubled in capacity since 1980 after being stagnated in performance for twenty years. Nickel metal hydride cells, introduced in 1992, have shown a 170 percent increase in energy density to be competitive on a volume basis with lithium ion. Other characteristics, such as charge retention, charge rate, high temperature operation, and rate capability have also advanced with improvements in materials and constructions. These two cell types account for roughly one half of the value of the small secondary battery market  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号