首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 468 毫秒
1.
多孔介质结构参数对表面火焰熄火特性的影响   总被引:1,自引:0,他引:1  
为优化基于多孔介质头部的微型燃烧室,以甲烷/空气预混气为燃料,针对多孔介质结构参数(当量孔径、孔隙率)在不同预混气初始温度下,对表面火焰熄火特性进行实验研究.研究表明:当量孔径为120μm的多孔介质表面火焰两侧同时发生脱火,当量孔径为80μm时先发生一侧脱火.随孔隙率或当量孔径的减小,熄火速度提升.当量孔径为80μm,孔隙率为0.55,0.50,0.45的多孔介质在当量比为1.0,预混气初始温度为300K时的熄火速度分别为1.11,1.22,1.31m/s.孔隙率为0.50,孔径为120,80μm的多孔介质在当量比为1.0,预混气温度为300K时的熄火速度分别为0.73,1.22m/s.预混气初始温度的升高对当量孔径为120μm或孔隙率为0.45的多孔介质影响更加明显,预混气初始温度从300K升至500K时,熄火速度分别增加了120%,76%.  相似文献   

2.
多孔介质表面预混火焰熄火特性实验   总被引:3,自引:2,他引:1  
对微型燃烧室中多孔介质表面预混火焰开展了不同孔径、孔隙率的多孔介质出口流场特性和熄火特性实验研究.研究结果表明:相对于圆管流,多孔介质出口流场边界层变薄,主流区宽度增加约50%,速度波动最大可达到前者的2.2倍.多孔介质孔径相同时,随孔隙率减小,或孔隙率相同时,随孔径减小,主流区的速度波动幅值均减小,在小孔径下更为明显,最大速度波动幅值从2.435m/s减小至1.099m/s.多孔介质表面预混火焰的熄火特性受出口流场和火焰形态的影响很大,孔隙率减小或孔径减小都会使相同当量比下熄火速度增加,多孔介质参数的影响最大可使熄火速度增加近1倍.   相似文献   

3.
正癸烷/甲苯/甲基环己烷火焰传播速度实验研究   总被引:3,自引:2,他引:1       下载免费PDF全文
于维铭  袁振  钟北京 《推进技术》2014,35(11):1544-1550
由于实验系统中燃料与氧化剂预混气制备和工况维持稳定存在较大的难度,目前国内外针对大分子液态碳氢燃料火焰传播速度的实验测量结果的报道依旧不多。为此建立了一个针对液体燃料的对冲火焰实验台,并在该实验台上测量了正癸烷、甲苯、甲基环己烷等三种煤油代表性替代燃料与空气预混气的火焰传播速度。测量结果表明,在一个大气压下,初始温度为388K的甲苯/空气预混火焰、初始温度378K的正癸烷/空气和甲基环己烷/空气预混火焰的最大火焰传播速度分别为52.4cm/s,64.2cm/s,58.3cm/s。  相似文献   

4.
林培华  林宇震  薛鑫  张良  张弛 《推进技术》2016,37(2):311-316
为了更好地在小尺度燃烧室中组织燃烧,对小尺度环形通道内多孔介质表面甲烷与空气预混火焰开展了流量和雷诺数边界特性实验研究。多孔介质采用了烧结金属粉末材料,燃烧在石英玻璃管和不锈钢管以及多孔介质组成的小尺度环形通道中进行。研究结果表明:随着预混气流量的增加,环形通道内的火焰形态由多孔介质表面火焰向推举火焰衍变,与推举火焰相比,多孔介质表面火焰更适合于在微小型燃烧室内组织燃烧。稳态预混气温度随流量的增加先上升后下降,其流量范围与两个火焰形态的基本重合,可以将温度的转折点作为表面火焰边界的定量判据。对于多孔介质表面火焰流量边界而言,当量比小于1.0时,甲烷预混气的表面火焰流量边界随着当量比的增大逐渐变宽;当量比大于1.0时,随着当量比的增大,多孔介质表面火焰流量边界变窄。对于多孔介质表面火焰雷诺数边界而言,随着当量比的增大,雷诺数边界逐渐变宽。  相似文献   

5.
刘宇  王金铎  谷午 《航空动力学报》2020,35(10):2036-2045
采用定容燃烧实验平台获得初始压力为0.1 MPa、初始温度为420、450 K和480 K,当量比为0.8~1.4工况下正十四烷/空气预混气层流燃烧速度和马克斯坦长度,并分析了初始温度、当量比等因素的影响。研究发现:初始温度和当量比的增加对预混气球形火焰稳定性影响较小,在初始温度为480 K、当量比为1.3工况下,火焰内部无裂纹或胞状结构;初始温度的增加能够加快火焰传播速度,促进火焰锋面形成,其影响在稀混合气中更为显著;随着当量比的增加,正十四烷预混燃烧火焰马克斯坦长度减小,火焰稳定性变差;随着初始温度的增加,正十四烷马克斯坦长度减小,无拉伸火焰传播速度和层流燃烧速度增加,另外,与RP-3航空煤油层流燃烧速度对比发现,正十四烷层流燃烧速度整体偏高。  相似文献   

6.
为了获得天然气的预混湍流燃烧特性,在湍流燃烧弹中对天然气在当量比范围为0.7~1.4、初始压力范围为0.1~0.3 MPa、初始温度范围为300~400 K、湍流强度范围为1.0~2.7 m/s条件下的预混湍流燃烧火焰发展特性进行了试验测试,并分析了当量比、湍流强度、初始温度、初始压力对天然气湍流火焰传播速度、火焰褶皱比以及湍流燃烧速度的影响。结果表明:湍流火焰传播速度随着当量比的升高先增加再降低,在当量比为1.1时达到最大,并且随湍流强度与初始温度的升高而升高,但随初始压力的升高变化不明显。火焰褶皱程度随湍流强度与初始压力的升高或当量比与初始温度的降低而逐渐增强。湍流燃烧速度随当量比的升高先升高后下降,在当量比为1.1时达到最大,并且随湍流强度、初始温度与初始压力的升高而逐渐升高。  相似文献   

7.
李姝  李君  卢占斌 《推进技术》2022,43(8):304-312
为解释毫米尺度多孔介质燃烧器中火焰可在一个当量比范围内驻定的物理现象,搭建了二维非稳态数学物理模型,利用数值计算方法定性研究了氢气/空气预混气在部分填充不锈钢网的微通道内的火焰传播特性。通过分析浸没火焰及表面火焰的温度分布特点并量化燃烧室内的预热和散热发现:火焰驻定在多孔介质内的不同位置时对应的传热特性存在差异,是控制火焰传播速度在一定当量比范围内保持恒定的关键因素,而预热及散热的相对大小可作为衡量传热对火焰宏观影响的重要参数。对火焰的的总预热与总散热之比R越临近多孔介质入口边界变化越剧烈,导致浸没火焰易驻定在多孔介质的中上游区域;多孔介质对火焰的预热虽在多孔介质出口边界外减小,但与多孔介质散热之比Rp呈上升趋势,使得低流速工况下易形成表面火焰。同时,R随当量比的变化规律导致多孔介质下游火焰的稳定性相对较弱。  相似文献   

8.
苏航  霍杰鹏  汪小憨  蒋利桥  赵黛青 《推进技术》2020,41(10):2302-2307
为了探究微小空间内的火焰加速特性,在一个可视化的、特征间距为0.45mm的微尺度定容燃烧室内,实验研究了丙烷/氢气/空气预混的火焰传播特性。实验考察了亚毫米空间条件下掺氢比例、混合气初始温度和初始压力对火焰传播的影响,其中掺氢比例分别为0.2和0.4,初始温度分别为290K和306K,初始压力从0.1MPa到0.3MPa。实验观察到了火焰在传播过程中加速,并发生缓燃转变到爆燃的现象,火焰传播速度获得大幅提升。另外发现初始压力的提升有利于加速火焰传播,提升峰值压力,且较小幅度的初始温度上升能够有效提高火焰传播速度。  相似文献   

9.
利用定容弹燃烧系统对正庚烷/空气混合气的最小点火能量进行了实验测量,获得了不同初始条件下正庚烷/空气混合气的最小电火花点火能量。实验结果表明:正庚烷/空气混合气的最小点火能量随当量比的增大先减小后增大。对于初始压力为0.1MPa和初始温度为450K的混合气,最小点火能量在当量比1.1附近达到最小值,为0.3904mJ。实验发现:正庚烷/空气预混气的初始压力和初始温度对最小点火能量有重要的影响,与对火焰传播速度的影响是一致的。分析表明,初始温度和初始压力无论是对最小点火能量还是对火焰传播速度的影响,都与混合气的化学反应速率密切相关,化学反应速率越快,火焰传播速度越大,最小点火能量越小。   相似文献   

10.
使用特征参数准则预测航空发动机燃烧室贫油熄火极限   总被引:2,自引:2,他引:0  
阐述了特征参数准则的核心原理和预测流程,使用计算流体力学软件FLUENT数值模拟分析了某型航空发动机环形燃烧室的贫油熄火过程,提出了判断熄火的征兆——"M"型火焰及其产生原因.运用特征参数准则研究了不同进口气流速度、气流温度等关键参数对航空发动机燃烧室贫油熄火极限的作用规律.结果表明:贫油熄火油气比随进口气流速度的增加逐渐下降;当进口气流温度小于395K时,贫油熄火油气比随进口气流温度的增加逐渐降低;当进口气流温度超过395K后,贫油熄火极限基本不随进口气流温度的变化而改变.  相似文献   

11.
段玉龙  王硕  贺森  万琳 《航空材料学报》2022,40(9):095401-1-095401-9
为分析多孔材料对预混气体爆炸特性参数的影响效果,采用自主搭建的爆炸实验平台,探究不同孔隙度和厚度的多孔材料对当量比为1的甲烷/空气预混气体爆炸的作用行为。实验研究表明,不同孔隙度的多孔材料对爆炸火焰和超压具有促进或抑制两种不同的影响。孔隙度较小时,爆燃火焰传播速度随着材料厚度的增大而降低,并在厚度较大时,火焰有短暂的传播延时现象。孔隙度较大时,预混火焰冲击多孔材料时发生淬熄,但随后一段时间内,由于负压抽吸作用,在已爆区域一侧的材料表面产生扩散燃烧现象,且扩散燃烧程度与材料厚度成反比关系。多孔材料的固相结构能降低压力的泄放效率,同时可吸收能量,进而提高爆炸超压的上升速率,降低超压峰值。当每英寸长度孔数δ=10的多孔材料促进火焰传播时,与当量比为1的预混气体爆炸相比,超压峰值最大可提高约2倍,造成更严重的后果。火焰冲击δ=20的多孔材料时发生淬熄,最大超压衰减可达47.17%,δ=30时最大超压衰减了24.62%。  相似文献   

12.
在受限空间预混钝体燃烧器中,利用OH-PLIF (平面激光诱导荧光)、PIV (粒子图像测速)和瑞利散射测温技术实验研究了火焰结构、流场和温度场之间的相互影响关系。对比分析了贫燃稳定与富燃抬升状态下甲烷/空气预混火焰的燃烧场特性。实验结果表明:火焰结构、流场和温度场分布之间均存在直接联系。贫燃(当量比为0.8)火焰钝体上方为膨胀的高温低速回流区,利于火焰维持稳定;富燃(当量比为1.2)火焰倾向在受限空间出口与外界空气卷吸后着火,其钝体上方为类似冷态的低速低温回流区,无法点燃混合气,因而形成抬升火焰。分析各场局部分布信息获得火焰场间相互依赖规律:钝体火焰中,高温和低速对应已燃区,低温和高速对应未燃区。  相似文献   

13.
为阐明低热值燃料在燃气轮机工况下的燃烧特性,在定容燃烧弹中测试了初始压力分别为0.10、0.15、0.20 MPa,初始温度分别为303、353、403、453 K,当量比范围为0.8~1.6,体积分数为7% H2、21.72% CO、21.45% CO2、49.83% N2的高炉煤气层流燃烧速度,并采用Gri-Mech 3.0化学反应机理对其进行了数值模拟。实验和模拟均发现,低热值燃料的层流燃烧速度随着初始压力的降低而增高,随着初始温度的增加而升高,且层流燃烧速度随温度和压力并非呈现单调性的变化规律,并在实验工况范围内对层流燃烧速度进行了温度和压力拟合。通过敏感性分析发现:主要的正向促进反应为R99、R46,主要的逆向抑制反应为R45、R36,层流燃烧速度受高活性自由基的影响,与链终止反应与链分支反应关于高活性自由基的竞争有关;随着初始压力的降低和初始温度的升高,高活性自由基摩尔分数增大,从而导致层流燃烧速度升高。   相似文献   

14.
初始温度对CH4/RP-3航空煤油混合燃料层流燃烧特性的影响   总被引:3,自引:2,他引:1  
采用定容燃烧实验装置对初始压力为0.1MPa、当量比为0.7~1.5、甲烷体积分数为0、0.4和0.8,以及3种初始温度工况下,CH4/RP-3航空煤油混合燃料层流燃烧特性进行实验研究。获得混合燃料火焰发展图片、层流燃烧速度和马克斯坦长度等,并分析初始温度对CH4/RP-3航空煤油混合燃料层流燃烧速度及燃烧稳定性的影响。结果表明,当火焰拉伸率趋于0时,非线性拟合方法NLM2(nonlinear fitting method 2)能够准确预测拉伸火焰传播速度随火焰拉伸率变化规律,外推可获得较为准确的无拉伸火焰传播速率。初始温度对稀混合燃料火焰传播速度的影响较大,而对化学当量比和浓混合燃料火焰传播速度的影响较小。3种甲烷体积分数混合燃料的层流燃烧速度均随初始温度增加而增加。当初始温度为420K时,马克斯坦长度随当量比减小最快,而当初始温度为480K时,马克斯坦长度减小最慢。在稀混合气和化学当量比工况,随着初始温度增加,混合燃料马克斯坦长度减小,混合燃料燃烧稳定性变差,而在浓混合气工况,各初始温度马克斯坦长度趋于一致,此时,初始温度增加对燃烧稳定性影响较小。   相似文献   

15.
为了获得沼气的燃烧稳定性与层流燃烧特性,在定容燃烧弹中试验测量了当量比范围为0.7~1.4、初始压力范围为0.1~0.5MPa、初始温度范围为290~380K条件下沼气的层流火焰传播特性。同时,对其燃烧稳定性与层流燃烧速度的主要影响因素进行了分析。结果表明:当层流燃烧速度小于0.15m/s时,火焰在发展过程中将出现浮力不稳定,火核中心逐渐向上飘起。马克斯坦长度随初始压力的升高或当量比的降低逐渐变小,火焰前锋面不稳定性得到增强;初始温度对马克斯坦长度的影响不明显。随当量比的升高,无拉伸火焰传播速度与层流燃烧速度先升高后降低,两者的最大值出现在当量比为1.1时;同时,沼气的层流燃烧速度随初始温度的降低或初始压力的升高逐渐降低。   相似文献   

16.
对突扩燃烧室内甲烷-空气预混燃烧进行了数值模拟,时均控制方程组的封闭采用RNG 湍流输运模型和premixed combustion模型.通过模拟研究了不同当量比及进口速度对甲烷-空气预混燃烧效果的影响.CFD数值模拟结果给出了燃烧室内湍流预混反应流的速度场及温度场分布.模拟结果表明当量比为0.6、进口速度为30 m/s时燃烧室内产生稳定预混火焰.该结果对于航空燃气轮机低NOx排放燃烧技术的研究提供了一定的参考条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号