首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
基于过程功率谱熵SVM的转子振动故障诊断方法   总被引:2,自引:4,他引:2  
针对旋转机械振动过程的复杂性和振动故障产生的随机性以及振动故障样本获取难的问题,在信息熵理论的基础上,融合了支持向量机(SVM)小样本、全局性和泛化性好的优点,提出了过程功率谱信息熵(功率谱熵)SVM的故障诊断方法。结合转子实验台,得到了4种典型振动故障在多测点多转速下的数据,通过计算提取了其功率谱熵特征值作为故障样本,即故障向量,并建立SVM诊断模型,对转子振动故障的类别、严重程度和部位识别诊断,验证了该方法在转子振动故障诊断方面效果良好。  相似文献   

2.
转子振动故障的小波能谱熵SVM诊断方法   总被引:5,自引:2,他引:5  
融合小波能谱熵和支持向量机(SVM)的特点,提出了基于小波能谱熵的SVM故障诊断方法.利用转子试验台对转子典型振动故障进行模拟并采集振动数据,提取其振动信号的小波能谱熵作为特征向量,通过样本训练建立了转子在各种典型振动故障状态下的SVM模型和多类分类器,进而实现了对未知转子振动故障的识别.实际应用表明,提出的转子振动故障诊断方法是可行和有效性的.   相似文献   

3.
费成巍  白广忱 《推进技术》2013,34(9):1266-1271
为了提高含有噪声和野值的转子振动故障样本诊断精度,提出了基于WCFSE-FSVM的故障诊断方法。充分融合小波相关特征尺度熵(WCFSE)特征提取方法和FSVM故障诊断方法的优点,建立WCFSE-FSVM故障诊断模型。基于转子实验台模拟4种典型故障,获得原始故障数据;并利用WCFSE方法提取这些故障数据的WCFSE值,选取故障信号高频段中的尺度1和尺度2上的小波相关特征尺度熵W1和W2构造出振动信号的故障向量作为故障样本,建立FSVM诊断模型。实例分析显示:WCFSE-FSVM方法的转子故障诊断精度最高,即故障类别诊断精度为94.49%,故障严重程度的诊断精度为95.58%,二者都优于其它故障诊断方法。验证了WCFSE-FSVM方法的可行性和有效性。   相似文献   

4.
基于改进模糊SVM的转子振动故障诊断技术   总被引:3,自引:2,他引:3  
首先对常用的隶属度确定方法进行改进,提出了基于改进模糊支持向量机(FSVM)的融合故障诊断方法,并建立了改进FSVM故障诊断数学模型;然后,利用转子振动模拟实验台对四种典型的转子诊断故障进行模拟,并提取其故障信号特征;最后,通过实例计算分析,验证了该方法在转子振动故障诊断方面是可行的和有效的.  相似文献   

5.
本文首先对常用的隶属度确定方法进行改进,提出了基于改进模糊支持向量机(FSVM)的融合故障诊断方法,并建立了改进FSVM故障诊断数学模型;然后,利用转子振动模拟实验台对四种典型的转子诊断故障进行模拟,并提取其故障信号特征;最后,通过实例计算分析,验证了该方法在转子振动故障诊断方面是可行和有效的,为转子振动故障准确诊断提供了一种新方法。  相似文献   

6.
针对铝合金试件腐蚀图像包含的大量腐蚀信息,提出了利用排列组合熵提取其灰度图特征参数的方法。该方法具有计算快速简鹇,抗噪能力较强,只需较短的序列长度就能估计出较稳定的系统特征值的特点。计算结果表明,基于排列组合熵的特征提取方法可以有效地提取各时间段内试件的灰度图在2个方向上的特征参数,熵值随着腐蚀时间的增加而规律性地增加,并可以作为评价腐蚀程度的一个重要特征参数。计算结果也验证了排列组合熵具有较好的抗噪性能。  相似文献   

7.
艾延廷  陈潮龙  田晶  王志 《航空动力学报》2014,29(10):2464-2470
通过提取信息(火用)特征,提出基于融合信息(火用)的转子振动故障支持向量机(SVM)诊断方法.首先,在转子试验台上分别模拟转子不平衡、轴系不对中、转子裂纹和转子碰磨4种典型故障,采集这4种典型故障在多转速和多测点下的振动加速度信号;其次,提取基于时域的奇异谱熵和频域的功率谱熵的转子振动故障过程变化规律的信息(火用)特征;最后,将提取到的信息(火用)特征作为故障向量,建立SVM故障诊断模型,进而对转子振动故障进行诊断.实例诊断结果表明:将信息(火用)特征与支持向量机相结合进行转子振动故障诊断,诊断结果准确率达到了97%,有效地提高了故障诊断的准确率.  相似文献   

8.
通过对航空发动机振动信号进行小波分解,依据多尺度空间局部能量分布和粗糙性提取基于子带信号能量加权广义粗糙度特征实现对振动情况的描述.然后将上述特征送入支持向量机(support vector machine,简称SVM)分类器进行训练,根据分类器的输出结果判断航空发动机的工作状态和故障类型.通过对实测航空发动机试车时得到的振动信号的实验分析结果表明,该算法可以有效地识别发动机的振动故障.   相似文献   

9.
基于信息熵距和FSVM隶属度的转子振动状态评估方法   总被引:1,自引:1,他引:1       下载免费PDF全文
艾延廷  陈潮龙  田晶  王志 《推进技术》2013,34(11):1543-1548
为了更有效、直观地对航空发动机的振动状态进行实时监控,运用信息熵和模糊支持向量机(FSVM)方法,建立了基于信息熵距和FSVM隶属度的转子振动状态评估方法。研究了振动信号的信息熵特征,提出了可以表示转子振动状态的指标—信息熵距;通过模糊支持向量机(FSVM)确定模糊隶属度矩阵,将模糊隶属度矩阵与信息熵距相结合,建立了一个多参数的转子振动状态评估模型;应用此模型对转子振动信号进行系统分析和定量计算,验证了该方法用于转子振动状态评估是有效、可行的。   相似文献   

10.
基于支持向量机的航空发动机整机振动故障诊断技术研究   总被引:4,自引:1,他引:4  
支持向量机是采用结构风险最小化原则代替传统统计学中的基于大样本的经验风险最小化原则的一种新型机器学习方法,由于它出色的学习分类能力和推广能力,广泛地应用于模式识别和函数拟合中。针对某型航空发动机整机振动过大的现象,提出了一种基于支持向量机(SVM)的整机振动故障诊断方法。首先介绍了SVM理论,然后根据SVM学习方法的结构风险最小化原则,对某型航空发动机已知的整机振动故障模式数据进行了训练和预测,并建立了基于SVM的航空发动机整机振动故障诊断模型。最后通过对已有故障模式进行诊断预测,证明该方法在航空发动机整机振动故障诊断方面具有良好效果。  相似文献   

11.
戴洪德  陈强强  戴邵武  朱敏 《推进技术》2020,41(8):1841-1849
由于机械系统的复杂性,滚动轴承振动信号的特征信息表现在不同尺度上,因此需要对振动信号进行多尺度分析。基于此,提出一种基于平滑先验分析(Smoothness priors approach,SPA)和排列熵(Permutation entropy,PE)的滚动轴承故障诊断方法。该方法首先采用平滑先验分析方法代替传统的时间序列分解方法对滚动轴承信号进行分解,得到轴承信号的趋势项和去趋势项;其次,分别计算趋势项和去趋势项的排列熵值;最后,将排列熵值作为特征向量,输入基于粒子群优化支持向量机建立的分类器。将该方法应用于滚动轴承实验数据并进行对比分析,结果表明,在训练样本数为每类50%的条件下,该方法的故障诊断正确率比PE和经验模态分解-PE分别高出12.5%和3.125%。  相似文献   

12.
针对支持向量机(Support Vector Machine)及小波分解用于模拟电路故障诊断时,一对一算法具有操作简单、诊断精度高、所需确定参数少,小波分解能表现电路响应特征但最优小波基选取目前缺乏有效方法的特点,提出利用混合粒子群算法(Hybrid Particle Swarm Optimization,HPSO)对小波基及一对一支持向量机的参数进行联合优化。将该方法应用于模拟滤波器的仿真电路实验,结果表明:利用该方法很容易求出全局最优解,能实现对最优小波基选取及支持向量机参数进行联合优化,避免了参数选择的盲目性,提高了模型的诊断精度。  相似文献   

13.
本文根据信号分离理论研究了发动机转子系统振动信号的降噪问题。当转子系统发生轻微碰摩时 ,由于振动信号中含有瞬时突变的微弱高频信息 ,这可能与高频随机噪声的频带互相叠加 ,所以利用传统的滤波方法不能有效地去噪 ,为碰摩故障诊断带来了困难。本文利用基于高阶累积量的盲信号分离方法 ,设计了相应算法 ,成功地从被噪声污染的信号中恢复源振动信号 ,从而可确保碰摩故障的检测和诊断能顺利进行  相似文献   

14.
针对模拟电路的故障诊断和定位问题,提出了一种改进支持向量机(suppon Vector Machine,SVM)故障诊断方法。通过在标准SVM中加入了对数据流形局部分布的约束,设计了一种依赖于数据分布的新型SVM。相对于标准SVM方法而言,新方法有效融合了数据分布的先验信息,提高了模型的诊断精度。将其用于模拟电路的故障诊断,验证了所提方法的有效性。  相似文献   

15.
针对旋转机械振动过程的复杂性和振动故障产生的随机性,提出了1种以信息熵理论为基础,通过多测点、多转速下的功率谱信息熵(功率谱熵)差矩阵来描述旋转机械振动过程变化规律的故障定量诊断方法。采用在转子试验台模拟转子振动的4种典型故障,得到4个测点多转速下的振动故障数据;对这些故障数据进行分析和处理,求其功率谱熵矩阵。结果表明:通过对转子振动故障信号进行实例计算和分析,该方法在转子振动故障分类和故障严重程度判断方面效果良好。  相似文献   

16.
基于小波包分析的转子振动信号故障特征提取研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对处理转子振动故障时,FFT等传统方法不能很好地分析同一频率下不同类型故障并发的复杂信号的情况,提出采用小波包分析的方法并分离故障特征向量。通过对比FFT与小波包分析方法,可以明显看出小波包分析的先进性和有效性。  相似文献   

17.
基于一类辨识的航空发动机故障诊断   总被引:2,自引:0,他引:2  
在支持向量机理论的基础上,打破了支持向量机的二类辨识传统,引入了基于支持向量机的一类辨识理论,以它为基础设计了基于一类辨识的一类分类器,并将它运用到航空发动机故障诊断中。通过对几种典型故障的分析,证明了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号