共查询到20条相似文献,搜索用时 46 毫秒
1.
基于过程功率谱熵SVM的转子振动故障诊断方法 总被引:2,自引:4,他引:2
针对旋转机械振动过程的复杂性和振动故障产生的随机性以及振动故障样本获取难的问题,在信息熵理论的基础上,融合了支持向量机(SVM)小样本、全局性和泛化性好的优点,提出了过程功率谱信息熵(功率谱熵)SVM的故障诊断方法。结合转子实验台,得到了4种典型振动故障在多测点多转速下的数据,通过计算提取了其功率谱熵特征值作为故障样本,即故障向量,并建立SVM诊断模型,对转子振动故障的类别、严重程度和部位识别诊断,验证了该方法在转子振动故障诊断方面效果良好。 相似文献
2.
3.
为了提高含有噪声和野值的转子振动故障样本诊断精度,提出了基于WCFSE-FSVM的故障诊断方法。充分融合小波相关特征尺度熵(WCFSE)特征提取方法和FSVM故障诊断方法的优点,建立WCFSE-FSVM故障诊断模型。基于转子实验台模拟4种典型故障,获得原始故障数据;并利用WCFSE方法提取这些故障数据的WCFSE值,选取故障信号高频段中的尺度1和尺度2上的小波相关特征尺度熵W1和W2构造出振动信号的故障向量作为故障样本,建立FSVM诊断模型。实例分析显示:WCFSE-FSVM方法的转子故障诊断精度最高,即故障类别诊断精度为94.49%,故障严重程度的诊断精度为95.58%,二者都优于其它故障诊断方法。验证了WCFSE-FSVM方法的可行性和有效性。 相似文献
4.
5.
6.
针对铝合金试件腐蚀图像包含的大量腐蚀信息,提出了利用排列组合熵提取其灰度图特征参数的方法。该方法具有计算快速简鹇,抗噪能力较强,只需较短的序列长度就能估计出较稳定的系统特征值的特点。计算结果表明,基于排列组合熵的特征提取方法可以有效地提取各时间段内试件的灰度图在2个方向上的特征参数,熵值随着腐蚀时间的增加而规律性地增加,并可以作为评价腐蚀程度的一个重要特征参数。计算结果也验证了排列组合熵具有较好的抗噪性能。 相似文献
7.
通过提取信息(火用)特征,提出基于融合信息(火用)的转子振动故障支持向量机(SVM)诊断方法.首先,在转子试验台上分别模拟转子不平衡、轴系不对中、转子裂纹和转子碰磨4种典型故障,采集这4种典型故障在多转速和多测点下的振动加速度信号;其次,提取基于时域的奇异谱熵和频域的功率谱熵的转子振动故障过程变化规律的信息(火用)特征;最后,将提取到的信息(火用)特征作为故障向量,建立SVM故障诊断模型,进而对转子振动故障进行诊断.实例诊断结果表明:将信息(火用)特征与支持向量机相结合进行转子振动故障诊断,诊断结果准确率达到了97%,有效地提高了故障诊断的准确率. 相似文献
8.
9.
基于信息熵距和FSVM隶属度的转子振动状态评估方法 总被引:1,自引:1,他引:1
为了更有效、直观地对航空发动机的振动状态进行实时监控,运用信息熵和模糊支持向量机(FSVM)方法,建立了基于信息熵距和FSVM隶属度的转子振动状态评估方法。研究了振动信号的信息熵特征,提出了可以表示转子振动状态的指标—信息熵距;通过模糊支持向量机(FSVM)确定模糊隶属度矩阵,将模糊隶属度矩阵与信息熵距相结合,建立了一个多参数的转子振动状态评估模型;应用此模型对转子振动信号进行系统分析和定量计算,验证了该方法用于转子振动状态评估是有效、可行的。 相似文献
10.
基于支持向量机的航空发动机整机振动故障诊断技术研究 总被引:4,自引:1,他引:4
支持向量机是采用结构风险最小化原则代替传统统计学中的基于大样本的经验风险最小化原则的一种新型机器学习方法,由于它出色的学习分类能力和推广能力,广泛地应用于模式识别和函数拟合中。针对某型航空发动机整机振动过大的现象,提出了一种基于支持向量机(SVM)的整机振动故障诊断方法。首先介绍了SVM理论,然后根据SVM学习方法的结构风险最小化原则,对某型航空发动机已知的整机振动故障模式数据进行了训练和预测,并建立了基于SVM的航空发动机整机振动故障诊断模型。最后通过对已有故障模式进行诊断预测,证明该方法在航空发动机整机振动故障诊断方面具有良好效果。 相似文献
11.
针对支持向量机(Support Vector Machine)及小波分解用于模拟电路故障诊断时,一对一算法具有操作简单、诊断精度高、所需确定参数少,小波分解能表现电路响应特征但最优小波基选取目前缺乏有效方法的特点,提出利用混合粒子群算法(Hybrid Particle Swarm Optimization,HPSO)对小波基及一对一支持向量机的参数进行联合优化。将该方法应用于模拟滤波器的仿真电路实验,结果表明:利用该方法很容易求出全局最优解,能实现对最优小波基选取及支持向量机参数进行联合优化,避免了参数选择的盲目性,提高了模型的诊断精度。 相似文献
12.
转子振动故障的过程功率谱熵特征分析与定量诊断 总被引:1,自引:0,他引:1
针对传统旋转机械振动故障定性诊断的不足,提出了1种以信息熵理论为基础的转子故障特征分析与定量诊断方法。在转子试验台上模拟转子振动的4种典型故障,分别得到4个测点多转速下的振动过程故障数据;对这些故障数据进行分析和处理,提取反映其振动过程的故障特征——功率谱信息熵,建立能描述转子振动过程变化规律的多转速多测点下的故障信息熵矩阵,并对振动故障进行分析;通过对转子振动故障信号的实例计算和定量诊断分析,验证了该方法在转子振动故障分类和故障严重程度判断方面是可行的。 相似文献
13.
14.
15.
16.
17.
19.
针对连续性过程系统中存在的大量强相关关系测点,根据测量数据间的关联特性,提出了一种应用相关信息熵进行传感器故障检测的方法。理论和实验分析证明,该方法具有简便、直观的传感器故障检测特点,较适合工程实际应用。 相似文献