首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用DSC-TG联用和燃速测试等方法,从降低CMDB推进剂和AP类复合推进剂压强指数的燃速调节剂中,筛选出了纳米PbO、QC、C及SEA、Fe2O3、Co3O4等燃速调节剂,并考察了这些燃速调节剂对NEPE推进剂燃烧性能的影响。通过分析两类燃速调节剂发挥作用的主要压强区间及其对推进剂燃速的影响趋势,对两类燃速调节剂进行了复配研究。试验结果表明,复合调节剂ZH-2(由纳米过渡金属氧化物、铅/铜盐等复配而成)使NEPE推进剂高压(10~25 MPa)燃速压强指数由0.78降低至0.62,而且在宽压强范围内消除了压强指数的拐点。  相似文献   

2.
为降低高燃速HTPB推进剂的感度,探讨了N-脒基脲二硝酰胺盐(FOX-12)对该推进剂能量性能、燃烧性能和安全性能的影响.结果表明,FOX-12使推进剂的燃温(Tc)、平均相对分子质量(M)和爆热(Qv)均降低,但对推进剂比冲(Isp)的影响较小,FOX-12含量为5%时,Isp降低约0.458%.随FOX-12含量增...  相似文献   

3.
为了改善RDX-CMDB推进剂的安全性能和力学性能,用一种含能高分子材料(记为HP-1)和一种胺类物质(记为AM)对RDX填料进行了表面包覆。用SEM和XPS对包覆样品的包覆效果进行了表征,对包覆前后RDX样品的撞击感度、摩擦感度及CMDB推进剂的机械感度和力学性能进行了测试和对比。结果表明,单独用HP-1包覆的样品机械感度没有明显变化;而随着AM用量的增加,样品的摩擦感度和撞击感度都有下降的趋势,当HP-1和AM的含量分别为1%和0.5%时,样品的特性落高升高了约17 cm,摩擦爆炸概率由92%降到58%。通过对RDX填料进行包覆,CMDB推进剂的撞击感度没有明显变化,而摩擦感度由58%降到4%,各个温度下的力学性能也得到了很大改善。  相似文献   

4.
采用外加燃速催化剂的方式,通过淤浆浇注工艺制备了13个少烟CMDB推进剂配方的样品。研究了芳香酸铅-铜盐,芳香酸铅-铜盐-碳黑以及PbCO_3-过渡金属氧化物-碳黑对燃烧性能的影响。在8~10MPa的压强变化范围内,加入4%芳香酸铅-铜盐和芳香酸铅-铜盐-碳黑,能够普遍提高基础配方的燃速,尤其后者的催化效果最为明显。随着压强的增高,催化剂的作用逐渐减弱。用4%PEG代替部分NC和用HDI代替TDI,与NC为单一粘合剂的基础配方对比,在8~12MPa压强区间内,PbCO_3-过渡金属氧化物-碳黑三元催化剂明显地降低了CMDB推进剂的燃速。同时观察到当有TDI存在时,加入1.5%的邻氨基苯甲酸铅,药浆适用期明显缩短。  相似文献   

5.
为了批量制备低感度超细六硝基六氮杂异伍兹烷(CL-20),用作固体推进剂的高能添加剂,以氧化锆球(0.8 mm或0.3 mm)为研磨介质,采用HLG-05型粉碎设备制备了两种超细类球形CL-20。用激光粒度仪、扫描电子显微镜(SEM)、X射线衍射(XRD)、傅里叶红外光谱(FTIR)和拉曼光谱(Raman)对CL-20样品进行了相应的表征;用差示扫描量热(DSC)研究了样品的热分解性能;测试了样品的撞击、摩擦和静电火花感度。结果表明:制备的微米级和亚微米级CL-20平均粒径分别为3.43μm和320 nm,表面光滑,类球形;其晶型不变,无质杂峰;超细CL-20的分解峰温稍有下降,活化能降低,其静电火花感度略有提高,但撞击感度分别降低了24.6%和108.4%,摩擦感度下降了8%和20%;机械感度降低效果明显,在高能固体推进剂中有较大的应用前景。  相似文献   

6.
铝粉粒径对高铝含量富燃料推进剂一次燃烧性能的影响   总被引:2,自引:0,他引:2  
通过改变铝粉粒径大小制作高铝含量推进剂,在此基础上进行热分析试验、爆热测试以及燃速测试,分析总结了铝粉粒径大小对推进剂一次燃烧性能的影响。推进剂各组分相同时,热分析结果表明,推进剂凝相反应程度相近,铝粉粒径大小对推进剂凝相反应没有明显影响;爆热测试和燃速测试表明,超细铝粉可显著改善推进剂燃烧性能,提高燃速和爆热、降低压强指数,减少燃烧产物结块、改善产物分散性;同时,超细铝粉由于自身小尺寸优势在推进剂的燃烧过程中更多地参与了气相反应,提高了推进剂气相放热量。通过以上实验分析得出,铝粉主要参与推进剂气相反应,铝粉粒径大小对推进剂气相反应影响较大。  相似文献   

7.
含碳氢燃料(ACH)的低特征信号富燃料推进剂特性   总被引:1,自引:0,他引:1  
随着低特征信号固体推进剂技术的发展,低特征信号富燃料推进剂的研究已受到国内外广泛关注。高能碳氢燃料部分替代富燃料推进剂中的金属燃料是降低推进剂特征信号的主要途径之一。采用激光粒度仪测试了烯烃类碳氢燃料(ACH)的粒径及粒径分布,利用TG-DTG热分析仪分析了ACH及含ACH的富燃料推进剂热分解特性,评价了ACH和含ACH的富燃料固体推进剂的机械安全性能(撞击感度和摩擦感度),采用靶线法和燃烧实验装置研究了推进剂的燃烧特性及火焰结构,分析了含ACH的富燃料推进剂的燃烧残渣率,并与不含ACH的富燃料推进剂进行了比较。结果表明,ACH的颗粒较均匀,明显呈现近"球形";富燃料推进剂的质量燃烧热值和体积燃烧热值随着ACH质量分数的增加均增大,而密度却减小; ACH的撞击感度和摩擦感度均较低,表明其自身本质是安全的,推进剂的特性落高H50随着ACH质量分数的增加而提高,而摩擦感度几乎不发生变化;在不同测试压力下,推进剂的燃速随ACH质量分数的增加而降低,而燃速压力指数却增大,压力指数提高了65.87%。  相似文献   

8.
新型高燃速推进剂是一种采用小球粘结、无溶剂挤成型的复合改性双基推进剂,20℃、6.86MPa下用靶线法实测静态燃速为46.25mm/s。为研究这种新型高燃速推进剂在发动机内的燃烧特性,在不同燃通比和燃喉面积比的装药条件下,进行了发动机试验,获得了相应的压强-时间曲线。分析结果表明,该推进剂在火箭发动机内不同压强下可出现3种完全不同的燃烧类型,即类似于双基推进剂的平行层燃烧、类似于超高燃速推进剂的对流燃烧和有限对流燃烧,并给出了3种燃烧类型的判断条件。  相似文献   

9.
含Cs盐的HTPB/AP/Al复合推进剂特性研究   总被引:1,自引:0,他引:1  
采用高倍率的扫描电镜观察了Cs盐的微观形貌,利用最小自由能法计算了不同含量Cs盐的复合推进剂能量性能并进行了测试,对Cs盐、含Cs盐复合推进剂的安全性能(撞击感度和摩擦感度)进行了评价,并对不同含量Cs盐推进剂的燃烧性能和燃烧火焰结构等性能进行了研究。结果表明,Cs盐的颗粒粒径较大,表面凹凸不平很不规则;含Cs盐复合推进剂的能量随Cs盐质量分数的增加稍有减小,推进剂密度从1.766 g/cm3提高到1.851 g/cm3;相对于AP,Cs盐和含Cs盐复合推进剂的感度均较低,当Cs盐含量为6%时,复合推进剂的机械感度最低,说明Cs盐在复合推进剂中应用是安全可行的;复合推进剂的燃速随Cs盐质量分数的增加而增大,当Cs盐含量为6%时,复合推进剂的压力指数降低幅度最大。  相似文献   

10.
高活性纳米金属粉具有热值高、密度大、点火和燃烧性能良好的优点,对提高固体推进剂的能量性能及燃烧性能具有非常重要的作用。采用SEM、EDS、XRD等手段对高活性金属粉进行了结构表征,采用静电火花感度评价方法研究了不同粒径Al和Zr对静电火花刺激响应特性,分析了不同金属形貌对静电火花刺激的响应特性,探讨了粒度对金属粉的静电火花感度的影响。结果表明,较之Al粉,Zr对静电刺激更为敏感,50%发火能仅为5.13 mJ;球形颗粒的金属粉较不规则形貌颗粒具有较低的发火能量,而随着纳米金属粒径的增大,其对静电火花刺激敏感程度呈下降趋势。研究成果为促进Al和Zr粉在固体推进剂中的安全使用提供了技术参考。  相似文献   

11.
在高燃速推进剂成熟配方的基础上选择标准物质的候选物,确定了合理的试样尺寸和制作工艺,制备了燃速定值范围在35~60、70~90、100~120 mm/s的3种高燃速标准物质。其均匀性和稳定性经考核合格后,采用多次定值试验确定其特性量值与不确定度。结果表明,高燃速推进剂标准物质可满足不同燃速范围燃速仪检定的需要,可确保测试结果准确可靠。  相似文献   

12.
采用原位自组装法和溶剂-反溶剂法两种不同的工艺,选用不同C/O质量比的氧化石墨烯(GO),对α-AlH_3进行了包覆。包覆样品的X射线衍射和傅里叶红外光谱结构表征表明,包覆前后α-AlH_3的晶型保持不变。采用机械撞击感度测试和扫描电镜,研究了包覆工艺对样品降感效果的影响关系。通过比较发现,溶剂-反溶剂法工艺制备的样品机械撞击感度要比原位自组装法的低。在所选GO中,以GO-3为包覆剂,采用溶剂-反溶剂法工艺制备得到的含AlH_3推进剂药浆的机械撞击感度最低,药浆50%爆炸的临界撞击能由7.3 J提高到11.7 J。  相似文献   

13.
为探索新的特征参量来预估NEPE推进剂的贮存寿命,采用高温加速老化方法,通过老化样品性能测试,检测老化过程中爆热、力学性能、燃速、有效安定剂含量、热爆炸临界温度、交联密度等参量的变化,并利用Bethelot方程评估NEPE推进剂的贮存寿命.结果表明,NEPE推进剂在高温加速老化过程中爆热、燃速、热爆炸临界温度及有效安定...  相似文献   

14.
本文根据R.A.Fifer的报告(AD/A121668,1982)编写而成.文中讨论了超高燃速固体推进剂的对流燃烧特征,对流燃速与材料的化学组成、孔隙率力学强度等的关系;阐述了表征对流燃速的密闭爆发器和靶线法试验结果之间存在的较大差异;分析了影响超高燃速材料感度的因素;最后展望了进一步研究的问题和可用的新技术。  相似文献   

15.
对大型发动机用的低燃速高固体含量HTPB推进剂进行了研制。采用超支化SU-2助剂降低推进剂药浆粘度为提高配方固体含量的方式,优化SU-2助剂含量,研制出固体质量分数89%的推进剂配方。依据抑制AP分解的质子转移机理,分别用高氯酸烷基胺衍生物A1N、草酸铵T29降燃速剂,获取低燃速HTPB推进剂,针对试验得到的推进剂性能数据,分析了单项降燃速剂的推进剂燃烧性能存在不足,提出了选用价廉的高氯酸烷基胺衍生物A1N/草酸铵T29/细AP复配方法,既降低燃速又能降低压强指数。经装药试验验证,获得6.86 MPa燃速5.185 mm/s,3~11 MPa压强指数0.328,密度≥1.80 g/cm3,20℃最大拉伸强度σm≥1.0 MPa,-40℃最大伸长率εm≥61.0%;5 h使用期粘度为2625 Pa·s;综合性能优良的高固体含量低燃速HTPB推进剂。以提高推进剂固体含量增加密度,增大HTPB推进剂比冲的设计方法,可供低燃速HTPB推进剂的发动机借鉴。  相似文献   

16.
热塑性聚氨酯弹性体包覆CL-20及对NEPE推进剂性能影响   总被引:5,自引:1,他引:4  
采用热塑性聚氨酯弹性体,通过水-溶液悬浮法将其包覆于六硝基六氮杂异伍兹烷(CL-20),并对包覆后的CL-20分别进行了XPS、SEM、撞击感度和表面能测试;研究了弹性体包覆CL-20对含CL-20的NEPE推进剂常温力学性能、燃烧性能的影响.研究表明,热塑性弹性体能有效包覆CL-20,在大幅度提高含CL-20的NEPE推进剂常温力学性能并改善"脱湿"的同时,改善高能低特征信号配方燃烧性能,σm最大提高了47%,εm最大提高了184%;燃速压强指数n降低了12%.  相似文献   

17.
为提高纳米CuCr2O4(n-CuCr2O4)燃烧效能,阐明其促进HTPB复合推进剂燃烧的机理,研究了n-CuCr2O4分散方法,探讨了n-CuCr2O4对复合推进剂安全性和燃烧性能的影响。结果表明,癸二酸二异辛酯(DOS)可使n-CuCr2O4颗粒充分分散,颗粒粒径为50 nm。将DOS与乙酸乙酯混合作为分散液,n-CuCr2O4/分散液为12/100,超声分散30 min, n-CuCr2O4可以有效分散,使推进剂燃速提高1.5%。在含量均为2.5%时,含n-CuCr2O4推进剂的燃速虽然低于含卡托辛的,但是摩擦感度和撞击感度均降低。与微米CuCr2O4相比,n-CuCr2  相似文献   

18.
以二氨基呋咱(DAF)为原料,经氧化、硝化、中和反应合成出3,3'-二硝胺基-4,4'-偶氮呋咱二肼盐(Hy2DNAAF),对其结构进行了表征,并对其热性能、机械感度性能、爆轰性能、单元推进剂和Hy2DNAAF-CMDB推进剂的性能进行了研究。结果表明,Hy2DNAAF的热分解峰温为208℃,特性落高为25.7cm。Hy2DNAAF的理论爆速为8635m/s,理论爆压为32.61GPa,Hy2DNAAF单元推进剂的理论比冲为2717N·s/kg,特征速度为1734.3m/s。Hy2DNAAFCMDB推进剂的理论比冲为2 522.9N·s/kg,特征速度为1591.1m/s。  相似文献   

19.
为了研究AlH_3对固体推进剂安全性能及成药性能的影响,采用扫描电子显微镜(SEM)观察了不同批次AlH_3的表面形貌,使用激光粒度分析仪测试了不同批次AlH_3的颗粒粒度,利用落锤撞击感度仪测试了含不同批次AlH_3固体推进剂的撞击感度。结果表明,不同批次AlH_3的表面形貌差异很大,即不同批次AlH_3的品质不同; AlH_3的品质影响AlH_3固体推进剂的安全性能,而AlH_3的粒度则在一定程度上影响着AlH_3固体推进剂的成药性能。  相似文献   

20.
含偶氮四唑胍的RDX-CMDB推进剂的燃烧性能和热行为研究   总被引:1,自引:0,他引:1  
蔚红建  王琼  陈佳宏 《固体火箭技术》2012,35(2):216-220,226
采用浇铸工艺制备了GZT部分取代RDX的系列RDX-CMDB推进剂样品。研究了GZT对不含催化剂的RDX-CMDB推进剂的燃速、压强指数及燃烧火焰结构等燃烧性能的影响,并采用TG-DTG和DSC实验,初步研究了含GZT的RDX-CMDB推进剂的热行为。结果发现,GZT对推进剂的火焰温度、火焰的暗区厚度、燃面上的亮点数目和燃烧表面对凝聚相的温度梯度等都呈现一定规律性的影响;在1~10 MPa范围内,GZT使RDX-CMDB推进剂的燃速升高,压强指数降低。热行为研究表明,加入GZT时,推进剂的DSC曲线上出现一个单独的放热分解峰,对应TG曲线上也表现出一个单独的失重过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号