首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
朱震  宋文萍  韩忠华 《航空学报》2018,39(2):121707-121707
发展翼身组合体复杂外形流动转捩自动判断方法,对高亚声速民机自然层流(NLF)机翼设计具有重要意义。使用多块结构化网格和三维雷诺平均Navier-Stokes(RANS)方程求解器,耦合边界层方程求解和基于线性稳定性理论(LST)的完全双eN方法,发展了一套可同时计及Tollmien-Schlichting波和横流不稳定性扰动诱导转捩的翼身组合体流动转捩自动判断方法。对DLR-F4翼身组合体绕流进行了转捩自动判断,将得到的转捩位置与试验结果进行比较,验证了所发展方法的正确性。使用上述方法对配置自然层流机翼的中短程民机翼身组合体外形进行了数值模拟,并将结果与单独机翼的转捩位置进行了对比,结果表明机身三维位移效应增强了自然层流后掠机翼边界层的横流不稳定性强度,导致翼根转捩位置提前至前缘区。  相似文献   

2.
孙蓬勃  周洲  郭佳豪 《航空动力学报》2022,37(12):2736-2748
以分布式涵道风扇推进为背景,使用多重参考系(MRF)和给定力分布的动量源方法(MSM)求解雷诺平均N-S(RANS)方程,对不同形状涵道风扇推进特性进行了数值模拟分析。对桨盘与不同形状涵道壁面之间的相互作用原理进行了研究,进而对不同外形分布式涵道风扇进行了分析。结果表明:纯圆形机匣推进特性最佳,纯方形最差,由方转圆的机匣推进特性居中;非圆机匣圆角的存在会诱使机匣内壁出现分离,产生干扰阻力,且圆角半径越小,影响越显著;非圆机匣影响风扇进口面积和桨尖涡的大小,从而从桨盘效率和唇口吸力两方面影响涵道推进效率。   相似文献   

3.
Unsteady aerodynamics and flow control for flapping wing flyers   总被引:13,自引:0,他引:13  
The creation of micro air vehicles (MAVs) of the same general sizes and weight as natural fliers has spawned renewed interest in flapping wing flight. With a wingspan of approximately 15 cm and a flight speed of a few meters per second, MAVs experience the same low Reynolds number (104–105) flight conditions as their biological counterparts. In this flow regime, rigid fixed wings drop dramatically in aerodynamic performance while flexible flapping wings gain efficacy and are the preferred propulsion method for small natural fliers. Researchers have long realized that steady-state aerodynamics does not properly capture the physical phenomena or forces present in flapping flight at this scale. Hence, unsteady flow mechanisms must dominate this regime. Furthermore, due to the low flight speeds, any disturbance such as gusts or wind will dramatically change the aerodynamic conditions around the MAV. In response, a suitable feedback control system and actuation technology must be developed so that the wing can maintain its aerodynamic efficiency in this extremely dynamic situation; one where the unsteady separated flow field and wing structure are tightly coupled and interact nonlinearly. For instance, birds and bats control their flexible wings with muscle tissue to successfully deal with rapid changes in the flow environment. Drawing from their example, perhaps MAVs can use lightweight actuators in conjunction with adaptive feedback control to shape the wing and achieve active flow control. This article first reviews the scaling laws and unsteady flow regime constraining both biological and man-made fliers. Then a summary of vortex dominated unsteady aerodynamics follows. Next, aeroelastic coupling and its effect on lift and thrust are discussed. Afterwards, flow control strategies found in nature and devised by man to deal with separated flows are examined. Recent work is also presented in using microelectromechanical systems (MEMS) actuators and angular speed variation to achieve active flow control for MAVs. Finally, an explanation for aerodynamic gains seen in flexible versus rigid membrane wings, derived from an unsteady three-dimensional computational fluid dynamics model with an integrated distributed control algorithm, is presented.  相似文献   

4.
以扇翼的气动特性(高升力)为关注焦点,对扇翼流动的流场结构细节进行了数值模拟研究。对有推力二维Lockheed C-141超临界翼型进行数值模拟,验证和确认了扇翼流场的数值模拟方法,并数值模拟了扇翼旋转时的流场结构。结果表明,其高升力来源于固定翼部分上表面高速流动的射流,而这种射流正是由叶片旋转带动扇翼内部流体不断加速喷射得到的。扇翼内部的流动是复杂的非定常流动,存在多种尺度的旋涡、湍流边界层及二者的相互干扰等,使气动力高频振荡,进而可以预测相当的气动噪声是不可避免的。将算法应用于扇翼飞行器的外形设计优化阶段,得到了若干构型的气动性能,为下一步开展的无人机研制工作提供了指导。  相似文献   

5.
The fan of a high bypass ratio turbo fan engine produces up to 80% of the total thrust of the engine. It is the low-pressure (LP) turbine that drives the fan and, on some engines, a number of compressor stages. The unsteady aerodynamics of the LP turbine, and in particular, the role of unsteady flow in laminar–turbulent transition, is the subject of this paper.The flow in turbomachines is unsteady due to the relative motion of the rows of blades. In the LP turbine, the wakes from the upstream blade rows provide the dominant source of unsteadiness. Because much of the blade-surface boundary-layer flow is laminar, one of the most important consequences of this unsteadiness is the interaction of the wakes with the suction-side boundary layer of a downstream blade. This is important because the blade suction—side boundary layers are responsible for most of the loss of efficiency and because the combined effects of random (wake turbulence) and periodic disturbances (wake velocity defect and pressure fields) cause the otherwise laminar boundary layer to undergo transition and eventually become turbulent.This paper discusses the development of unsteady flows in LP turbines and the process of wake-induced boundary-layer transition in low-pressure turbines and the loss generation that results. Particular emphasis will be placed on unsteady separating flows and how the effects of wakes may be exploited to control loss generation in the laminar–turbulent transition processes. This control has allowed the successful development of the latest generation of ultra-high-lift LP turbines. More recent developments, which harness the effects of surface roughness in conjunction with the wakes, are also presented.  相似文献   

6.
叶片反扭对跨声速大涵道比风扇性能的影响   总被引:4,自引:1,他引:3  
杨慧  沈真  郑赟 《航空动力学报》2016,31(1):100-105
使用基于流固耦合算法的叶片反扭程序,考虑了非定常气动力对叶片变形的非线性作用,研究了叶片反扭对跨声速大涵道比风扇性能的影响.以冷态叶型为起点,先计算离心力作用下的叶片变形,在此基础上使用流固耦合程序获得非定常气动力作用下的变形.考察了3个转速下叶片的动态变形对大涵道比风扇气动性能的影响.结果表明:在跨声速工况下,叶片表面激波位置的变化对叶片反扭角有很大作用,在考察的转速范围内,堵塞点使用设计叶型计算的流量大于动态叶型下的流量,数值达7%,将导致发动机起飞推力小于预测值.结果表明在大涵道比风扇设计阶段,预测气动性能使用准确叶型的重要性.   相似文献   

7.
Self-sustained shock wave oscillations on airfoils at transonic flow conditions are associated with the phenomenon of buffeting. The physical mechanisms of the periodic shock motion are not yet fully understood even though experiments performed over fifty years ago have demonstrated the presence of oscillatory shock waves on the airfoil surfaces at high subsonic speeds. The unsteady pressure fluctuations generated by the low-frequency large-amplitude shock motions are highly undesirable from the structural integrity and aircraft maneuverability point of view. For modern supercritical wing design with thick profiles, the shock-induced fluctuations are particularly severe and methods to reduce the shock wave amplitudes to lower values or even to delay the oscillations to higher Mach numbers or incidence angles will result in expanding the buffet boundary of the airfoil. This review begins with a recapitulation of the classical work on shock-induced bubble separation and trailing edge separation of a turbulent boundary layer. The characteristics of the unsteady pressure fluctuations are used to classify the types of shock-boundary layer interaction. The various modes of shock wave motion for different flow conditions and airfoil configurations are described. The buffet boundaries obtained using the standard trailing edge pressure divergence technique and an alternative approach of measuring the divergence of normal fluctuating forces are compared to show the equivalence. The mechanisms of self-sustained shock oscillations are discussed for symmetrical circular-arc airfoils at zero incidence and for supercritical airfoils at high incidence angles with fully separated flows. The properties of disturbances in the wake are examined from linear stability analysis of two-dimensional compressible flows. The advances in high-speed computing make predictions of buffeting flows possible. Navier–Stokes solvers and approximate boundary layer-inviscid flow interaction methods are shown to give good correlation of frequencies and other unsteady flow characteristics with experiments. Finally, passive and active methods of shock oscillation control show promising results in delaying buffet onset to higher Mach numbers or incidence angles, thus enhancing the transonic performance of airfoils.  相似文献   

8.
张阳  周洲  郭佳豪 《航空学报》2021,42(9):224977-224977
以分布式电推进(DEP)垂直起降(VTOL)无人机(UAVs)为研究背景,采用基于混合网格技术及k-ω SST湍流模型求解雷诺平均Navier-Stokes (RANS)方程的多重参考系(MRF)/动量源方法(MSM),对分布式涵道风扇-机翼构型的喷流气动特性进行了高精度准定常的数值模拟。通过对涵道单元/涵道-机翼的实验验证了零来流条件下数值计算方法的可靠性和高效性,进而对分布式涵道风扇-机翼构型的气动优势进行了分析讨论,最后对分布式涵道风扇的转速、间距、涵道风扇旋转方向等因素进行了数值模拟。研究表明:相比于单个涵道风扇,分布式涵道风扇通过喷流的耦合作用大大提升了机翼的气动特性;分布式涵道风扇不同转速的喷流对截面翼型的压力分布和周围流场的速度分布影响具有一定的相似性,但具体数值随转速变化;分布式涵道风扇间距的增大会改善涵道风扇单元的拉力特性,机翼的气动特性会随之降低;涵道风扇合理的旋转方向不仅会使得下翼面喷流区域的高压过渡更加平缓,静压数值更加连续,而且内侧涵道风扇也会被外侧喷流所激励,对机翼的升力特性产生更好的诱导效果。  相似文献   

9.
民机涡扇发动机重吸入特性风洞试验   总被引:3,自引:0,他引:3  
民机在滑跑减速阶段一般会使用发动机的反向推力来提高其减速性能和滑跑安全性,当滑跑速度较低时使用该装置,从发动机排出的向前方喷射的气流存在被发动机重新吸入的可能,该喷流受发动机风扇的压缩做功,喷流的温度比环境温度高,如果此气流被发动机重新吸入,将会导致发动机进气气流的温度畸变,而该畸变将会引起发动机风扇叶片的颤振,影响发动机的寿命和安全性。故对于一个使用涡扇发动机的新型飞机,有必要通过风洞试验来得到其在各工况下的重吸入特性,并且根据其重吸入特性,设定截止使用反推力的滑跑速度。本文主要论述通过风洞试验获得发动机重吸入特性,并且确定反推力使用截止滑跑速度的方法。  相似文献   

10.
This paper examines the Shock/Shock Interactions (SSI) between the body and wing of aircraft in supersonic flows. The body is simplified to a flat wedge and the wing is assumed to be a sharp wing. The theoretical spatial dimension reduction method, which transforms the 3D problem into a 2D one, is used to analyze the SSI between the body and wing. The temperature and pressure behind the Mach stem induced by the wing and body are obtained, and the wave configurations in the corner are determined. Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative (NND) finite difference scheme. Good agreements between the theoretical and numerical results are obtained. Additionally, the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically. The influences of wedge angle are significant, whereas the effects of sweep angle on wave configurations are negligible. This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows.  相似文献   

11.
针对翼身融合布局(BWB)飞机分布式系统一体化研究方法存在计算资源耗费巨大的问题,发展基于多流路体积力的飞机分布式系统一体化计算方法。从沿流线的体积力模型出发,将压气机对气流的作用力用沿流线的源项场代替。将单流路的计算模型加以扩展,综合考虑分布式推进系统与BWB的耦合影响,在分布式推进系统的压缩系统所在区域添加体积力源项,建立多流路体积力计算模型。将其应用于某大型BWB飞机进行一体化数值仿真。结果显示:相较于传统的全周定常数值模拟方法,采用多流路的体积力模型能够在保证一定计算精度的条件下提高至少10倍的计算效率。  相似文献   

12.
苏汉寿 《航空动力学报》1988,3(3):271-273,287
吊扇的设计方法是以旋翼空气动力学的二维流动模型为基础,这对吊扇叶身部分比较吻合。然而占扇叶长度约10%的叶尖区域却处在强烈的三维流动状态下,用四氯化钛所作的吊扇流场显示实验可清楚观察到。如图1所示,叶尖部分有清晰的径向流动,叶尖线速度越大,叶尖区域气流径向流动速度也越高,紧靠叶尖  相似文献   

13.
基于方差分析的航空发动机风扇叶片外物撞击识别   总被引:1,自引:0,他引:1  
张帅  张强波  张霞妹 《航空学报》2021,42(5):524196-524196
航空发动机工作过程中风扇外物撞击事件的检测与识别对飞机飞行安全至关重要。通过风扇叶片外物撞击试验平台模拟真实发动机受外物撞击的过程,研究风扇外物撞击规律与检测识别方法。针对航空发动机的机载参数和加装振动参数对风扇外物撞击事件识别难度高与识别准确率低的问题,开展了基于非接触风扇叶片叶尖振动测量的外物撞击检测试验,提出了基于非接触叶尖振动位移方差威布尔分布函数极大似然估计与自动门限检测系统的风扇叶片外物撞击自动门限识别方法,并获取了风扇转子不同转速下外物撞击叶尖振动位移方差识别门限值。选取风扇转子转速为3 000 r/min状态下,直径为16 mm、质量为2.9 g的外物弹体撞击风扇叶片的振动位移数据进行分析,并采用高速摄像系统对该方法识别结果的可靠性进行验证,结果表明:基于非接触叶尖振动位移方差分析法能够准确识别风扇叶片外物撞击事件、撞击叶片编号与撞击叶片数。  相似文献   

14.
《中国航空学报》2016,(5):1205-1212
A streamwise-body-force-model (SBFM) is developed and applied in the overall flow simulation for the distributed propulsion system, combining internal and external flow fields. In view of axial stage effects, fan or compressor effects could be simplified as body forces along the streamline. These body forces which are functions of local parameters could be added as source terms in Navier-Stokes equations to replace solid boundary conditions of blades and hubs. The val-idation of SBFM with uniform inlet and distortion inlet of compressors shows that pressure perfor-mance characteristics agree well with experimental data. A three-dimensional simulation of the integration configuration, via a blended wing body aircraft with a distributed propulsion system using the SBFM, has been completed. Lift coefficient and drag coefficient agree well with wind tun-nel test results. Results show that to reach the goal of rapid integrated simulation combining inter-nal and external flow fields, the computational fluid dynamics method based on SBFM is reasonable.  相似文献   

15.
As computational fluid dynamics matures, researchers attempt to perform numerical simulations on increasingly complex aerodynamic flows. One type of flow that has become feasible to simulate is massively separated flow fields, which exhibit high levels of flow unsteadiness. While traditional computational fluid dynamic approaches may be able to simulate these flows, it is not obvious what restrictions should be followed in order to insure that the numerical simulations are accurate and trustworthy. Our research group has considerable experience in computing massively separated flow fields about various aircraft configurations, which has led us to examine the factors necessary for making high-quality time-dependent flow computations. The factors we have identified include: grid density and local refinement, the numerical approach, performing a time-step study, the use of sub-iterations for temporal accuracy, the appropriate use of temporal damping, and the use of appropriate turbulence models. We have a variety of cases from which to draw results, including delta wings and the F-18C, F-16C, and F-16XL aircraft. Results show that while it is possible to obtain accurate unsteady aerodynamic computations, there is a high computational cost associated with performing the calculations. Rules of thumb and possible shortcuts for accurate prediction of massively separated flows are also discussed.  相似文献   

16.
对旋风机对旋叶轮级间流场的实验研究   总被引:3,自引:0,他引:3  
采用实验方法对对旋风机对旋叶轮级间流场进行了研究。在改变级间间隙和前后级转速的情况下,采用五孔探针对级间压力场和速度场进行了了测量,并对结果进行了分析。研究表明:前后级动叶加功量的分配在对旋风机的气动设计中占有很重要的地位,这种分配可以通过转速的匹配来实现;在气动设计中,应增加对旋叶轮级间间隙的控制设计。   相似文献   

17.
履带车辆前置动力舱冷却空气流场分析   总被引:1,自引:0,他引:1  
以某履带车辆前置动力舱为研究对象,建立了舱内冷却空气流场的物理模型与数学模型,对装备有多个散热器且入口边界条件不同的动力舱内、外部冷却空气流场进行了仿真研究,并与实车测试结果进行了对比,分析了不同车速对各散热器冷却空气质量流量的变化规律的影响.结果表明:在相同风扇转速下,随着车速由0km/h增加到70km/h,两个散热器及两个风扇的质量流量均有10%左右的变化,但是两个散热器的总质量流量基本不变.车速在0~70km/h变化时,由仿真计算和试验测试所得的各散热器和风扇的冷却空气质量流量变化率之差都小于5%.  相似文献   

18.
钟敏  华俊  郑遂  白俊强  孙卫平  黄领才 《航空学报》2019,40(1):522372-522372
大型水陆两栖飞机AG600的动力装置为安装在机翼上的4台同向旋转涡轮螺旋桨发动机,针对1:15缩比模型带动力风洞试验显示的螺旋桨滑流对侧风起降状态的偏航力矩不稳定影响,对全机带动力风洞试验模型进行了大规模并行非定常数值计算,再现了风洞试验现象,通过流动机理分析明确其产生原因主要是左侧滑时右外翼分离和垂尾背鳍涡破裂,这些原因和数值模拟的准确性也为后期的风洞试验所证实。考虑到模型风洞试验中尺度限制造成的低雷诺数和高螺旋桨转速,为保证飞行安全,继续采用该非定常方法对全尺寸飞机真实侧风起降状态进行了详细数值分析和偏航稳定性评估。研究结果显示,在飞行雷诺数和螺旋桨转速下,相同侧风范围内风洞试验显示的流动不稳定因素基本消失,偏航稳定性允许的侧风范围明显增加。本研究实现了四发螺旋桨飞机起降状态横向气动特性的滑流影响非定常数值分析,建立了基于计算流体力学的风洞与飞行雷诺数效应的相互关系,进行了偏航稳定性的虚拟试飞评估,研究成果也为AG600飞机的首飞和飞行试验所验证。  相似文献   

19.
The importance of scale effects is recognised generally in steady aerodynamics but is often ignored in unsteady aerodynamics. An attempt is made to remedy this situation by the compilation of a review of information on the influence of Reynolds number from a wide range of unsteady aerodynamic tests, with particular reference to wing flows. The unsteady tests considered are buffet and buffeting, dynamic tests of aerofoils and wings, pressure measurements, oscillatory control surface derivatives, and stability derivatives.

The review suggests that for the usual recommended model conditions with fixed transition, scale effects are small for fully-attached or well-separated flows, but may be large close to incipient separation. With fixed transition extrapolation from model to full scale Reynolds numbers is usually possible. In contrast, with free transition scale effects can be large for both attached and separated flows.

Much more research is needed into the magnitude of scale effects on unsteady flows at transonic speeds. Some test cases for the prediction of scale effects in unsteady aerodynamics are suggested. This review combines material presented by the author in Paper 3.4.1 ICAS-90 Proceedings (Stockholm) and Paper 27 AGARD CP 507 October 1991 (San Diego).  相似文献   


20.
The performance of propulsion configurations with boundary layer ingestion (BLI) is affected to a large extent by the level of distortion in the inlet flow field. Through flow methods and parallel compressor have been used in the past to calculate the effects of this aerodynamic inte-gration issue on the fan performance;however high-fidelity through flow methods are computation-ally expensive, which limits their use at preliminary design stage. On the other hand, parallel compressor has been developed to assess only circumferential distortion. This paper introduces a discretized semi-empirical performance method, which uses empirical correlations for blade and performance calculations. This tool discretizes the inlet region in radial and circumferential direc-tions enabling the assessment of deterioration in fan performance caused by the combined effect of both distortion patterns. This paper initially studies the accuracy and suitability of the semi-empirical discretized method by comparing its predictions with CFD and experimental data for a baseline case working under distorted and undistorted conditions. Then a test case is examined, which corresponds to the propulsor fan of a distributed propulsion system with BLI. The results obtained from the validation study show a good agreement with the experimental and CFD results under design point conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号