首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influence of different natural physical fields on biological processes.   总被引:1,自引:0,他引:1  
In space flight conditions gravity, magnetic, and electrical fields as well as ionizing radiation change both in size, and in direction. This causes disruptions in the conduct of some physical processes, chemical reactions, and metabolism in living organisms. In these conditions organisms of different phylogenetic level change their metabolic reactions undergo changes such as disturbances in ionic exchange both in lower and in higher plants, changes in cell morphology for example, gyrosity in Proteus (Proteus vulgaris), spatial disorientation in coleoptiles of Wheat (Triticum aestivum) and Pea (Pisum sativum) seedlings, mutational changes in Crepis (Crepis capillaris) and Arabidopsis (Arabidopsis thaliana) seedling. It has been found that even in the absence of gravity, gravireceptors determining spatial orientation in higher plants under terrestrial conditions are formed in the course of ontogenesis. Under weightlessness this system does not function and spatial orientation is determined by the light flux gradient or by the action of some other factors. Peculiarities of the formation of the gravireceptor apparatus in higher plants, amphibians, fish, and birds under space flight conditions have been observed. It has been found that the system in which responses were accompanied by phase transition have proven to be gravity-sensitive under microgravity conditions. Such reactions include also the process of photosynthesis which is the main energy production process in plants. In view of the established effects of microgravity and different natural physical fields on biological processes, it has been shown that these processes change due to the absence of initially rigid determination. The established biological effect of physical fields influence on biological processes in organisms is the starting point for elucidating the role of gravity and evolutionary development of various organisms on Earth.  相似文献   

2.
Space is not only a place to study biological effects of gravity, but also provides unique opportunities to examine other environmental factors, where the biological actions are masked by gravity on the ground. Even the earth's magnetic field is steadily acting on living systems, and is known to influence many biological processes. A systematic survey and assessment of its action are difficult to conduct in the presence of dominant factors, such as gravity. Investigation of responses of biological systems against the combined environment of zero-gravity and zero-magnetic field might establish the baseline for the analysis of biological effects of magnetic factors. We propose, in this paper, an experimental concept in this context, together with a practical approach of the experiments, both in orbit and on the ground, with a thin magnetic shielding film. Plant epicotyl growth was taken as an exemplar index to evaluate technical and scientific feasibility of the proposed system concept.  相似文献   

3.
Mammals have evolved under the influence of many selective pressures. Two of these pressures have been the static force of gravity and the daily variations in the environment due to the rotation of the earth. It is now clear that each of these pressures has led to specific adaptations which influence how organisms respond to changes in either gravity or daily time cues. However, several unpredicted responses to altered gravitational environments occur within the homeostatic and circadian control systems. These results may be particularly relevant to biological and medical issues related to spaceflight. This paper demonstrates that the homeostatic regulation of rat body temperature, heart rate, and activity become depressed following exposure to a 2 G hyperdynamic field, and recovers within 5-6 days. In addition, the circadian rhythms of these same variables exhibit a depression of rhythm amplitude; however, recovery required a minimum of 7 days.  相似文献   

4.
5.
Microtubule self-organisation depends upon gravity.   总被引:3,自引:0,他引:3  
The molecular processes by which gravity is transduced into biological systems are poorly, if at all, understood. Under equilibrium conditions, chemical and biochemical structures do not depend upon gravity. It has been proposed that biological systems might show a gravity dependence by way of the bifurcation properties of certain types of non-linear chemical reactions that are far-from-equilibrium. We have found that in-vitro preparations of microtubules, an important element of the cellular cytoskeleton, show this type of behaviour. On earth, the solutions show macroscopic self-ordering, and the morphology of the structures that form depend upon the orientation of the sample with respect to gravity at a critical moment at an early stage in the development of the self-organised state. An experiment carried out in a sounding rocket, showed that as predicted by theories of this type, no self-organisation occurs when the microtubules are assembled under low gravity conditions. This is an experimental demonstration of how a very simple biochemical system, containing only two molecules, can be gravity sensitive. At a molecular level this behaviour results from an interaction of gravity with macroscopic concentration and density fluctuations that arise from the processes of microtubule contraction and elongation.  相似文献   

6.
Living organisms, especially plants, show some plasticity in their overall development, usually as a response to the external environment. Plasticity may apply not only to the external form of organisms but also to their physiology as well as to the detailed structure of their genome. A further example of plasticity may be developmental instability, where anomalous development seems to appear spontaneously, probably as a result of some transient environmental perturbation. Whether the absence of gravity would have sufficient impact on any living process to evoke a specific course of plastic development is unknown, though it is possible that in certain circumstances special forms, or 'agravimorphs', could be produced. Through such new forms, it should be possible to identify processes required for development in which 1 x g gravity is a necessary participant.  相似文献   

7.
An efficient regenerative life Support system for manned base cannot be conceived without biological processes. Therefore since the 1960's, numerous projects have been initiated to close, as far as possible, the biological loop. Based on the selected concepts (i.e. carbon and/or nitrogen cycles, microbial organisms and/or higher plants) mathermatical models have been studied and built. Unfortunately, to our knowledge these robust models do not take into account the effects of the space environment (i.e. reduced gravity, radiation,…). In the past, a large number of scientific studies has been performed to understand these effects but only a few of them have tried to quantify them. In this paper we present a very simplified concept of an ecosystem. Its objectives, which are compatible with a non-pressurised mission, are on one hand to quantify microbial kinetics and on the other hand to demonstrate the validity of several technologies and technical concepts.  相似文献   

8.
Magnetic levitation-based Martian and Lunar gravity simulator.   总被引:2,自引:0,他引:2  
Missions to Mars will subject living specimens to a range of low gravity environments. Deleterious biological effects of prolonged exposure to Martian gravity (0.38 g), Lunar gravity (0.17 g), and microgravity are expected, but the mechanisms involved and potential for remedies are unknown. We are proposing the development of a facility that provides a simulated Martian and Lunar gravity environment for experiments on biological systems in a well controlled laboratory setting. The magnetic adjustable gravity simulator will employ intense, inhomogeneous magnetic fields to exert magnetic body forces on a specimen that oppose the body force of gravity. By adjusting the magnetic field, it is possible to continuously adjust the total body force acting on a specimen. The simulator system considered consists of a superconducting solenoid with a room temperature bore sufficiently large to accommodate small whole organisms, cell cultures, and gravity sensitive bio-molecular solutions. It will have good optical access so that the organisms can be viewed in situ. This facility will be valuable for experimental observations and public demonstrations of systems in simulated reduced gravity.  相似文献   

9.
10.
When cell physiologists detect gravity related reactions of their objects it is often difficult to decide where the receptors for the observed effects are located. Answering this question is necessary for any further analysis of a detected gravity effect on cells. In previous papers we have discussed direct and indirect gravity effects in relation to the smallest functional units where the primary receptor, which interacts with gravity, is positioned inside and outside of such a unit, respectively. So, in a first approximation we can conclude that in a multicellular aquatic organism, which changes its metabolism in weightlessness, the primary receptors of gravity are located inside the cells of that organism. A special approach is necessary when free living cells, the density of which may be higher than the one of the (liquid) medium, or even cells living on a free surface are observed. In these two cases also indirect effects have to be taken into account, which will be demonstrated with the aid of the slime mold . Additionally the environment of the organisms can be changed directly and indirectly by gravity.  相似文献   

11.
Chinese scientists studied some of the problems in the field of space life science and achieved success in the area during 2000-2001. Space biological experi ments were carried out in the orbit and the results of ground studies on protein crystallization, space radiation, space motion sickness were introduced in this paper. The influences of simulated weightlessness on the brain-function, the car diovascular, endocrine hormones, immunity, skeletal and muscle systems were presented. In addition, gravity medicine and space environment medicine, as well as countermeasures to space deconditioning, such as the traditional Chinese medicine, were also reported.  相似文献   

12.
The origin and subsequent evolution of life on Earth has taken place within an environment of which a 1g gravitational force is a part. Thus, all living organisms accommodate this variable in their structure and function. Evolution has also selected mechanisms to sense gravity which, in consequence, give particular orientations to living process. It is anticipated that the higher the evolutionary status of an organism, the greater the chance that it will possess multiple mechanisms of gravisensing because evolution discards nothing that assists fitness, but only adds to existing processes. A multiplicity of mechanisms permits gravity to participate in a wide range of developmental programmes, such as taxes, morphisms and tropisms, through the action of different sensors and distinct transduction/response pathways.  相似文献   

13.
United Nations Space Treaties [10 and 11] require the preservation of planets and of Earth from contamination. All nations part to these Treaties shall take measures to prevent forward and backward contamination during missions exploring our solar system. As observer for the United Nations Committee on Peaceful Uses of Outer Space, the COSPAR (Committee of Space Research) defines and handles the applicable policy and proposes recommendations to Space Agencies [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005. http://www.cosparhq.org/scistr/PPPolicy.htm.]. The goal is to protect celestial bodies from terrestrial biological contamination as well as to protect the Earth environment from an eventual biohazard which may be carried by extraterrestrial samples or by space systems returning to Earth. According to the applicable specifications, including in our case the French requirements [CNES, System Safety. Planetary Protection Requirements. Normative referential CNES RNC-CNES-R-14, CNES Toulouse, ed. 4, 04 October 2002.], the prevention of forward contamination is accomplished by reducing the bioburden on space hardware to acceptable, prescribed levels, including in some instances system sterilization, assembling and integrating the appropriate spacecraft systems in cleanrooms of appropriate biological cleanliness, avoiding or controlling any recontamination risk, and limiting the probability impact of space systems. In order to prepare for future exploration missions [Debus, A., Planetary protection: organization requirements and needs for future planetary exploration missions, ESA conference publication SP-543, pp 103–114, 2003.], and in particular for missions to Mars requiring to control the spacecraft bioburden, a test program has been developed to evaluate the biological contamination under the fairing of the Ariane 5 launcher.  相似文献   

14.
Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into account in the planning and evaluation of experiments designed to test the potential role of microgravity on biological developmental and evolution.  相似文献   

15.
To understand the evolution of organic molecules involved in extraterrestrial environments and with exobiological implications, many experimental programs in the laboratory are devoted to photochemical studies in the gaseous phase as well as in the solid state. The validity of such studies and their applications to extraterrestrial environments can be questioned as long as experiments conducted in space conditions, with the full solar spectrum, especially in the short wavelength domain, have not been implemented. The experiments that are described here will be carried out on a FOTON capsule, using the BIOPAN facility, and on the International Space Station, using the EXPOSE facility. Vented and sealed exposition cells will be used, which will allow us to study the chemical evolution in the gaseous phase as well as heterogeneous processes, such as the degradation of solid compounds and the release of gaseous fragments.  相似文献   

16.
The manifestation of gravitropic reaction in plants has been considered from the phylogenetic point of view. A chart has been suggested according to which it is supposed that the first indications of the ability to identify the direction of the gravitational vector were inherent in the most ancient eukaryotes, which gave rise to green, brown, yellow-green, golden and diatomaceous algae as well as fungi. The experiments on the role of gravity in plant ontogenesis are being continued. The sum total of the data obtained in a number of experiments in space shows that under these conditions a structurally modified but normally functioning gravireceptive apparatus is formed. The data confirming the modification, under changed gravity, of the processes of integral and cellullar growth of the axial organs of seedlings as well as of the anatomo-morphological structure and developmental rates of plants during their prolonged growth in space are presented. It is assumed that this fact testifies to the presence of systems interacting with gravity during plant ontogenesis. At the same time the necessity for further experiments in order to differentiate an immediate biological effect of gravity from the ones conditioned by it indirectly due to the changes in the behavior of liquids and gases is pointed out. The methodological aspects of biological experiments in space as the main source of reliable information on the biological role of gravity are discussed.  相似文献   

17.
18.
Since the first flight of the ESA Biorack on the German Spacelab Mission D1 in 1985 evidence has been obtained that biological cells and small unicellular organisms function differently under conditions of microgravity. However, there is still lack of scientific proof that these effects are caused by a direct influence on the cells in the weightlessness condition. The question how normal gravity may play a role in cellular activity is being addressed and the results show that gravity may provide important signals during certain state transitions in the cell. These would be gravity-sensitive windows in the biological process. Also, by amplification mechanisms inside the cell, the cell may assume a state that is typical for normal gravity conditions and would change in microgravity. Experimental tools are discussed that would provide the conditions to obtain evidence for direct action of gravity and for the possible existence of gravity-sensitive windows.  相似文献   

19.
The investigation of chemical evolution of bodies in our solar system has, in the past, included observations, theoretical modeling, and laboratory simulations. Of these programs, the last one has been the most criticized due to the inherent difficulties in accurately recreating alien environments in the laboratory. Processes such as wall reactions and changes in chemistry due to difficulties in achieving realistic conditions of temperature, pressure, composition, and energy flux may yield results which are not truly representative of the systems being modeled. However, many laboratory studies have been done which have yielded data useful in planetary science. Gross simulations of atmospheric chemistry have placed constraints on the nature of complex molecules expected in planetary atmospheres. More precise studies of specific chemical processes have provided information about the sources and properties of product gases and aerosols. Determinations of basic properties such as spectral features and reaction rate constants yield data useful in the interpretation of observations and in computational modeling. Alone, and in conjunction with modeling, laboratory experiments will continue to be used to further our understanding of the outer solar system, and some experiments that need to be done are listed.  相似文献   

20.
Physico-chemical characteristics of biomembranes and cell gravisensitivity.   总被引:1,自引:0,他引:1  
The resistance of living systems to the action of environmental factors is known to be largely determined by molecular organization of biomembranes constituting the basis of the cell per se and of all intracellular organelles. Gravity as one of the environmental factors, plays a definite role in the vital activity of organisms. Therefore, the problem of altered gravity impact on biological objects should be considered in close relation to the functional state of membranes and contractible elements of cytoskeleton. Moreover, the involvement of membrane structures and cytoskeleton in the processes of reception and realization of gravitational stimulus allows us to evaluate the extent of the direct or indirect influence of gravity on cell functioning in the gravitational field. The results of experimental studies having been conducted up to this time on a variety of cells and cell organelles under altered gravity conditions demonstrated noticeable alterations in the molecular organization of the membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号