首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the ion, electron and neutral gas observations, performed by five of the six sensors comprising the PLASMAG-1 experiment on board VEGA-1 and -2, the following results are discussed: (1) the existence of the bow shock and its location at 1.1×106 km for VEGA-1 inbound; (2) the existence of a cometopause and its location at 1.6×105 km for VEGA-2 inbound; (3) the plasma dynamical processes occurring inside the cometosheath; (4) the phenomena taking place within the cometary plasma region including mass-spectroscopy of cometary ions at distances 1.5×104 km; (5) the existence of keV electrons near closest approach to the nucleus; and (6) the radial dependence of the cometary neutral gas and the comparison with model calculations, yielding a mean ionization scale length of 2×106 km and an overall production rate of 1.3×1030 molecules s−1 for VEGA-1 inbound. The results are also discussed in the context of the other, both remote and in-situ, observations, performed on board the VEGA- and GIOTTO-spacecraft.  相似文献   

2.
Three distinct boundaries are identified from the PICCA cometary ion observations within the innermost part of the coma of comet Halley: (1) the 'cometopause' at a cometocentric distance Rc 1.5×105 km, characterized by the appearance of water-group ions well above background; (2) the 'cold cometary plasma boundary' at Rc 3×104 km, characterized by a sudden and simultaneous decrease in the temperatures of all cometary ions, and (3) the 'ionopause' at Rc 6000 km, characterized by a fast decrease in the intensity of all cometary ions by a factor 3–5. Between the first two boundaries only ions with masses less than 50 amu are present, showing distinct maximum intensities at 18, 32 and 44 amu at the second boundary. Downstream of the second boundary also ions of mass 12, 64, 76, 86 and 100 amu are detected.  相似文献   

3.
This review of the plasma regime sampled by the encounter of the International Cometary Explorer spacecraft (ICE) with the comet Giacobini-Zinner, discusses the shock, or bow wave, ion pickup, ionization mechanisms, and the cometary plasma tail.

The observations are consistent with the existence of a weak shock, which may be pulsating, but do not exclude the suggestion by Wallis and Dryer that the shock, though present around the sub-solar point, is in process of decaying to a wave on the flanks.

Pickup of cometary ions provokes, by means of several mechanisms, ion cyclotron, mirror, beam and electrostatic instabilities which cause strong turbulence in the inner coma, as indicated in the power spectra of the magnetic field in the coma and the surrounding volume. Heavy mass loading and consequent slowing down of the solar wind is observed. Acceleration of ions by a stochastic mechanism is indicated.

Ionization of cometary neutrals occurs principally by photoionization and charge exchange. Alfvens critical velocity mechanism, likely operates only in the inner coma not visited by ICE. A steep increase of nearly two orders of magnitude in electron density occurs in the tail, where electron velocity distributions show evidence of entry of electrons from the solar wind. The turbulence there is damped by the high ion density and low temperature.

In general, the vicinity of the comet is filled with plasma phenomena and a rich variety of corresponding atomic and molecular processes can be studied there. Comparison between the ICE, Giotto, and Vega observations forms a most valuable future study.  相似文献   


4.
An overview is presented of electrons, protons and heavier ions (E > 20 keV) recorded by the energetic particle detector EPONA in the Comet Halley environment, 12–15 March, 1986. Pick-up ions were detected at distances of up to at least 7.5 × 106 km from the nucleus. Estimates of the energies that typical cometary ions may be expected to acquire from the solar wind pertaining at Encounter show that the pick-up process is insufficient to account for the energies of the particles detected. An additional mechanism must thus be postulated to account for the observed particle signatures. Preliminary correlations with magnetic and plasma wave data from other instruments suggest that the presence of MHD turbulence at several million kilometers upstream of the bowshock may have contributed to the acceleration of the first pick-up ions observed. The bowshock boundary (inbound) does not appear to have constituted a location where particle acceleration to high energies took place. Downstream of the shock boundary, hardening of the energy spectrum and the development of less anisotropic particle streaming was observed to occur when the spacecraft was in a turbulent environment 1 × 106 km from the nucleus. The waxing influence of mass loading as a mechanism for reducing energetic particle fluxes as well as the depletion of energetic ions due to their escape along open field lines and to charge exchange collision with neutrals in a progressively more stagnant solar wind, may be inferred in a regime (seen on the magnetometer data to be largely non-turbulent) traversed by the spacecraft from 5 × 105 km from the nucleus to within the magnetic pile-up region. A major burst of ions and electrons (not yet established to be of cometary origin) occurred when the spacecraft was close to the Contact Surface. A population of high energy electrons (from 180 keV to at least 300 keV) was detected for about one hour before Closest Approach and for several hours thereafter. Also an energetic beam of electrons was identified exiting from a location at about 1 × 106 km from the nucleus (outbound). Finally, differences between inbound and outbound particle signatures are described.  相似文献   

5.
The nucleus of an active comet, such as comet Halley near its perihelion, produces large quantities of gas and dust. The resulting cometary atmosphere, or coma, extends more than a million kilometers into space, where it interacts with the solar wind. An “induced” cometary magnetosphere is a consequence of this interaction. Cometary ion pick-up and mass loading of the solar wind starts to take place at very large cometocentric distances. Eventually this mass loading leads to the formation of a weak cometary bow shock. Even closer to the nucleus, collisional processes, such as ion-neutral chemistry, become important. Other features of the magnetosphere of an active comet include a magnetic barrier, a magnetotail, and a diamagnetic cavity near the nucleus. X-ray emission from comets is produced by the interaction of the solar wind with cometary neutrals and this topic is also discussed. A broad review of the cometary magnetosphere will be given in this paper.  相似文献   

6.
Recent results of theoretical investigations related to generation of high-energy (0.1-1 keV) photons in comets due to production of high-temperature (3×105-107 K) plasma clots from collisions of cometary and interplanetary grains at high relative velocities (70-700 km s−1 at heliocentric distances R=0.01-1 AU) are summarized and main features of the process are marked.  相似文献   

7.
In March 6 and 9, 1986 the spacecrafts ‘Vega-1’ and ‘Vega-2’ have flown through the coma of comet Halley and have carried measurements of plasma, energetic particles, magnetic field and plasma waves along its trajectory. A short review of these measurements and its comparison with theoretical models of solar wind interaction with comets are given.

The spacecrafts ‘Vega-1’ and ‘Vega-2’ have studied the solar wind loading by cometary ions, the structure of cometary bow shock and the processes in the inner coma of comet Halley. Exactly in this sequence we discuss the results of measurements and compare them with the theory.  相似文献   


8.
Strong interplanetary scintillations (IPS) of the quasar 2314+03 were recorded at 103 MHz at Thaltej-Ahmedabad, India with a transit type correlation interferometer on 18, 19 and 20 December 1985, as the radio source was predicted to be occulted by the ion tail of the comet Halley.

On 18th through 20th very strong scintillations, with periodicities of 1 sec average were observed, their amplitude progressively decreasing as the source approached the tail-end. The rms variations of scintillating flux of the source on 18, 19 & 20 were about 18, 11 & 4.7 Jy, as against 3.3 Jy on control days 17 and 21 December for solar elongation of 87°.

Assuming Gaussian irregularities with weak scattering, the rms density variations, ΔN, of 10, 6, 3 and 1 elec./cm3 on 18 through 21 December, from the comet nucleus towards its tail-end, varied as (ΔN) ∝ r−3.3 as against (ΔN) ∝ r−2 in the solar plasma.

Quasi-periodic modulations of the enhanced scintillating flux possibly imply 104 km scale-size ion condensations and mean electron density of 103 to 104 electrons/cm3 in the Halley's plasma tail.  相似文献   


9.
A 40.6 cm Newtonian telescope has been interfaced to the Fabry-Perot interferometer at the Arecibo Observatory to make high spectral resolution measurements of Comet Halley emissions at 6562.72 Å (H-alpha) and 6300.3 Å (OI). In March 1986 the H-alpha surface brightness for a 5′.9 field of view centered on the comet nucleus decreased from 39±7.8 rayleighs on 12 March to 16±3.8 rayleighs on 23 March. The atomic hydrogen production rate on 12 March 1986 was 1.62±0.5 × 1030 s−1, and on 23 March 1986 it was 6.76±2.3 × 1029 s−1. Using spectral resolution of 0.196 Å, we found the atomic hydrogen outflow velocity to be approximately 7.9±1.0 km s−1. In general, the H-alpha spectra are highly structured, and indicative of a multiple component atomic hydrogen velocity distribution. An isotropic outflow of atomic hydrogen at various velocities is not adequate to explain the spectra measured at H-alpha. The 6300.3 Å emission of O(1D) had a surface brightness of 81±16 rayleighs on 15 March 1986, and 95±11 rayleighs on 17 March 1986. After adjustment for atmospheric extinction, the implied O(1D) production rate on 15 March is 6.44±3.0 × 1028 s−1, and the production rate on 17 March is 5.66±2.7 × 1028 s−1. These spectra included a feature at 6300.8 Å that we attribute to NH2. The brightness of this emission feature was 37±11 rayleighs on 15 March.  相似文献   

10.
The Giotto, Vega-1 and Vega-2 spacecraft flew through the environment of comet Halley at a relatively close range with velocities of the order of 70–80 km/s. The fore sections of their surface were bombarded by neutral molecules and dust grains which caused the emission of secondary electrons and sputtered ions. This paper makes use of the secondary electron current measurements performed on Vega-1 to infer some characteristic features of the cometary atmosphere. The total gas production rate is estimated to be of the order of 1030 molecules/s and is found to vary with time; the presence of a major jet is also detected at closest approach.  相似文献   

11.
The energy content of nonthermal particles in solar flares is shared between accelerated electrons and ions. It isimportant for understanding the particle acceleration mechanism in solar flares. Yohkoh observed a few intense flares which produced both strong gamma-ray lines and electron bremsstrahlung continuum. We analyze energy spectra of X-class solar flares on October 27, 1991(X6.1), November 6, 1997 (X9.4), July 14, 2000 (X5.7) and November 24, 2000 (X2.3). The accelerated electron and proton spectra are derived from a spectral analysis of their high-energy photon emission and the energy contents in >1 MeV electrons and >10 MeV protons are estimated to be 6×l028 – 4×1030 and 2×1028 – 5×1029 erg, respectively. We study the flare to flare variation in the energy content of >1 MeV electrons and >10 MeV protons for the four Yohkoh gamma-ray flares. Ratios of >1 MeV electron energy content to >10 MeV proton energy content are roughly within an order of magnitude.  相似文献   

12.
The quasilinear theory of MHD waves excitation by cosmic rays accelerated at a front of supernova shock has been constructed. It is shown that the energetic particles excite the waves propagating from the shock front, the intensity and the spectrum of these waves is obtained. The role of nonlinear Landau damping in the formation of such spectrum has been analysed. The diffusive scattering length of the high energy particles in the preshock region has been calculated and it is shown with the help of these formulae that the effective Fermi acceleration at the shock front is possible upto the values of the relativistic factor = 104 - 105. The injection mechanism for cosmic rays acceleration has been proposed. It is based on stochastic Fermi acceleration of the thermal plasma by MHD waves excited in the preshock region. Different possibilities for wave phase velocity dispersion needed for stochastic Fermi acceleration are analysed, those are the excitation of the oblique magnetosonic waves as well as the excitation of parallel Alfven waves propagating in opposite directions. The distribution function of the suprathermal particles accelerated by MHD waves is obtained, the cosmic rays density as well as the lower boundary of their energy spectrum realised in the proposed mechanism are also calculated.  相似文献   

13.
Utilizing many years of observation from deep space and near-earth spacecraft a theoretical understanding has evolved on how ions and electrons are accelerated in interplanetary shock waves. This understanding is now being applied to solar flare-induced shock waves propagating through the solar atmosphere. Such solar flare phenomena as γ-ray line and neutron emissions, interplanetary energetic electron and ion events, and Type II and moving Type IV radio bursts appear understandable in terms of particle accleration in shock waves.  相似文献   

14.
The parameters and location of the weak bow shocks detected by the spaceprobes are compared with gas dynamical calculations. No shock is identifiable at times, indicating that it is not dominant over temporal changes and not very significant in enhancing intrinsic dissipation and phase mixing processes. The location at comet Halley was closer than predicted on the mass-loading model, indicating inefficient pick-up of implanted ions. Flaring of the shock limbs was also lower at the Giotto encounter, closer to the minimum level induced by strong cooling in the inner coma. The suprathermal cometary ions' disappearance in the ionosheath outside the magnetopause discontinuity confirms this. Flow deviation and shock strength need closer modelling, but the thick shock in the protons is evidence for an ion-ion instability mechanism, apart from the upstream Fermi processes.  相似文献   

15.
16.
The mass-loading concept is discussed in relation to the dynamics of magnetoplasma streaming through rarefied background gas. Changes in energy and momentum flux (generally losses) can outweigh the increases in mass flux. Suprathermal ion components cannot be simply described in fluid terms: as shown by the probes to comet Halley, the main cometary ions are depleted by interaction with the background gas faster than they are scattered and thermalised by plasma turbulence. MHD instabilities tend to isotropize pitch angles but do not thermalise the ions, while wave steepening into a bow shock occurs outside positions expected from mass-loading. In the strongly-loaded subsonic region, charge exchange of suprathermal ions causes energy losses that can be more significant than further increases of mass. Non-parallel pick-up of new implanted ions, large gyroradii and finite spatial scales also limit the validity of fluid models.  相似文献   

17.
Spatial distribution of the continuum radiation in the range of 0.95–1.9 μm presumes total dust production rate of the comet of 10ρ tonne s−1 (ρ is the dust material density) and its angular distribution proportional cos . Observations of the water vapor band at 1.38 μ m reveal strong jets, their time shift from the dust jet measured in situ is consistent with gas velocity of 0.82±0.1 km s−1 and dust velocity of 0.55±0.08 km s−1. The OH vibrational-rotational bands observed are excided directly via photolysis of water vapor. Water vapor production rate deduced from the H2O band and OH band intensities is 8×1029 s−1. Intensity of the CN(0,0) band result in the CN column density of 9×1012 cm−2, i.e. larger by a factor of 3 than given by the violet band.  相似文献   

18.
Results of rocket experiments on study of plasma flows (PF) artificially injected by sources separated from vehicles and their effect on medium parameters in ionosphere at altitudes 160:230 km are presented.PF were injected comprising lithium ions with velocities 1,2 x 104 m/sec. and cesium-potassium ions with velocities (1,4–1,5)x103 m/sec. Mass flow rate in case of lithium PS is 2 mg/sec, and in case of cesium-potassium PS is 0,2 g/sec. During experiments mass-spectrometer measurements of ion medium content in ranges of different ion masses were held, disturbancies of electric fields with frequencies up to 20 kHz and electron flows with energies 0,7keV, 4,6keV and over 40 keV were controlled at distancies from 150m to (500–600)m between plasma source and scientific equipment.  相似文献   

19.
It may not be doubted anymore that anomalous cosmic rays (ACRs) are produced in the heliosphere from interplanetary pick-up ions through their acceleration at the solar wind termination shock. However, there is no general agreement in the community of heliospheric researchers concerning the mechanism of injection of the pick-up ions into the shock acceleration. We discuss here three possible ways for pick-up ions to be involved into the acceleration process at the termination shock: (1) preacceleration of pick-up ions in the whole region from the Sun up to the termination shock by solar wind turbulences and interplanetary shock waves, (2) local preacceleration of pick-up ions in a vicinity of the termination shock by shock surfing, and (3) formation of high-velocity tails in pick-up ion spectra consisting of secondary pick-up ions which are produced in the supersonic solar wind due to ionization of energetic neutral atoms entering from the inner heliosheath.  相似文献   

20.
The properties of cylindrical and spherical electron acoustic shock waves (EASWs) in an unmagnetized plasma consisting of cold electrons, immobile ions and Boltzmann distributed hot electrons are investigated by employing the reductive perturbation method. A Korteweg–de Vries Burgers (KdVB) equation is derived and its numerical solution is obtained. The effects of several parameters and ion kinematic viscosity on the basic features of EA shock waves are discussed in nonplanar geometry. It is found that nonplanar EA shock waves behave quite differently from their one-dimensional planar counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号