首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
旋翼翼型的动态失速现象限制了直升机的最大飞行速度和机动性,并且其产生机理复杂、抑制困难,是直升机空气动力学领域持续关注的重点与难点问题.本文首先介绍了试验、半经验模型和计算流体力学(CFD)等旋翼翼型动态失速研究方法的发展,分析了不同方法的优缺点和适用范围.其次,梳理了旋翼翼型动态失速机理及气动外形、迎角及来流等参数影响机制的研究进展.综合对比发现,变来流-变迎角耦合状态的动态失速更符合旋翼桨叶剖面的流动特征,是未来旋翼翼型动态失速研究的重要方向之一.然后,阐述了旋翼翼型设计方法和设计理念的发展历程,分析了主流翼型定常设计与少数非定常设计理念的优缺点.分析结果表明,非定常设计可以获得既能缓解动态失速又能显著提高静态气动特性的翼型,综合考虑旋翼桨叶剖面运动与来流特征的非定常设计是当前旋翼翼型设计的一个新方向.最后,对旋翼翼型设计的未来发展方向进行了讨论,提出了旋翼翼型设计与旋翼桨叶一体化设计的多层级、多阶段发展设想.  相似文献   

2.
直升机旋翼翼型动态失速特性试验研究   总被引:2,自引:0,他引:2  
针对CH-9.5旋翼翼型,开展了不同马赫数、迎角及振动频率下的静态和动态气动特性实验,介绍了试验测量方法、试验结果处理步骤,测量了不同状态、不同参数时的翼型动态失速特性,给出了迟滞环区域随马赫数、迎角及振动频率的变化规律,所得的试验结果为理论模型提供了验证依据。  相似文献   

3.
旋翼翼型低Ma数动态失速特性计算   总被引:2,自引:1,他引:2  
低Ma数下,翼型前缘涡强度的增加和移动使法向力系数产生很大的超调量,Beddoes通过增加一项与延迟后后缘分离点有关项来模拟该特性,并改进Leishman-Beddoes二维翼型动态失速模型。在此基础上,本文在非定常法向力系数中引入一阶延迟,推迟失速判断点,得到修正后模型;而后,通过计算NACA0012、OA207翼型在低Ma数下的非定常气动力,并与实验结果进行对比,验证了模型在计算翼型低Ma数下非定常气动力的准确性,并分析了折合频率、迎角平均值、振幅对计算结果的影响。  相似文献   

4.
为了拓展Leishman-Beddoes(L-B)动态失速模型的应用范围,以适应特定翼型的动态失速分析,在详细分析L-B动态失速模型特点的基础上,提出一种模型参数的识别方法。以SC-1095翼型为例,采用其静态升阻特性数据,对L-B动态失速模型中的参数进行了识别,并据此对该翼型的动态失速升阻特性进行了数值计算,计算结果与试验值吻合良好。  相似文献   

5.
旋翼翼型非定常动态失速特性的CFD模拟及参数分析   总被引:5,自引:0,他引:5  
构建了一套基于运动嵌套网格技术和可压缩RANS方程的旋翼翼型非定常流动特性模拟的高效、高精度的CFD方法。首先,发展了基于Poisson方程求解的围绕翼型的粘性贴体正交网格生成方法,并提出了基于最小距离法(MDM)改进策略的运动嵌套网格生成方法,克服了弹簧法可能导致网格畸变的不足;其次,为准确模拟由湍流分离和气流再附引起的气动力的迟滞效应,基于RANS方程、双时间方法和高阶插值格式,建立了旋翼翼型非定常气动特性分析的高精度数值方法,并采用能够较好捕捉气流分离现象的S-A湍流模型;再次,针对旋翼后行桨叶动态失速时桨叶剖面来流速度较低、迎角较大的特点,为解决低来流速度时L-B半经验模型在旋翼翼型非定常动态失速计算中的局限性,并克服可压缩方程对低速流场计算收敛困难和精度低的问题,建立了基于Pletcher-Chen低速预处理方法、FAS多重网格法和隐式LU-SGS方法相结合的高效数值方法。应用发展的方法,分别针对NACA0012、SC1095旋翼翼型静态和轻度、深度动态失速进行计算,精确捕捉了气动力迟滞效应以及翼型前缘脱体涡的产生、对流和脱落过程,验证了本文方法的有效性;最后,着重针对NACA0012动态失速状态,开展了振荡参数对旋翼翼型非定常动态失速特性影响的分析,研究结果表明翼型迎角平均值、振幅及减缩频率的变化均能引起迟滞效应的改变并使得气动力峰值发生有规律的前、后移现象等。  相似文献   

6.
基于后缘小翼的旋翼翼型动态失速控制分析   总被引:3,自引:2,他引:3  
针对后缘小翼(TEF)的典型运动参数对旋翼翼型动态失速特性的控制进行了研究。发展了一套适用于带有后缘小翼控制的旋翼翼型非定常流动特性模拟的高效、高精度CFD方法。通过求解Poisson方程生成围绕旋翼翼型的黏性贴体和正交网格,为保证后缘小翼附近的网格生成质量,建立了基于翼型点重构的方法来描述后缘小翼的偏转运动;为克服变形网格方法可能导致网格畸变的不足,发展了一套适用于带有后缘小翼控制的旋翼翼型运动嵌套网格方法。基于非定常雷诺平均Navier-Stokes(URANS)方程、双时间法、Spalart-Allmaras(S-A)湍流模型和Roe-Monotone Upwind-centered Scheme for Conservation Laws(Roe-MUSCL)插值格式,发展了旋翼翼型非定常气动特性分析的高精度数值方法,并采用Lower-Upper Symmetric Gauss-Seidel(LU-SGS)隐式时间推进方法及并行技术提高计算效率。以有试验结果验证的HH-02翼型和SC1095翼型为算例,精确捕捉了动态失速状态下的气动力迟滞效应,验证了本文方法的有效性。着重针对SC1095旋翼翼型的动态失速状态开展后缘小翼的控制分析,提出了可以体现翼型升力、阻力及力矩综合特性的关系式Po和Pc,揭示了后缘小翼振荡频率、相位差和偏转幅值对动态失速特性影响的规律。研究结果表明:当后缘小翼偏转的相对运动频率为1.0,且小翼运动规律与翼型振荡规律之间的相位差为0°时,后缘小翼能够更好地抑制翼型动态失速现象;在此状态下,当偏转幅值为10°时,SC1095翼型最大阻力系数和最大力矩系数可以分别降低19%和27%。  相似文献   

7.
本文给出受迫谐振翼型的动失速工程估算方法。本方法基于风洞试验,综合分析翼型动、稳态特性之间的差别与动、稳态条件之间的关系,建立一套估算动、稳态特性之间差别的经验公式,修正稳态特性,得到相应的动态特性,用本方法计算了三种翼型不同动态条件(包括深失速和后掠)的动失速特,并与测量和文献结果进行了比较,结果符合得相当好。  相似文献   

8.
为分析变来流速度状态下的旋翼翼型气动特性,提出了利用翼型平移来模拟来流速度变化的数值方法.在此方法基础上,采用基于隐式LU-SGS(lower upper symmetric Gauss-Seidal)方法的非定常雷诺平均N-S(Navier-Stokes)(RANS)方程,模拟了SC1095旋翼翼型在定迎角 变来流速度及变迎角 变来流速度状态下的非定常气动特性.通过对比分析发现:翼型在变速度-定迎角状态下会表现出明显的非定常现象,产生了前缘分离涡,气动特性会出现明显的迟滞效应及波动现象,脉动速度越大,非定常效果越明显.并且基准速度越大,翼型气动特性的峰值越大;翼型迎角越大,非定常涡出现的也越早.考虑直升机旋翼翼型实际工作环境,在变速度-动态失速状态下,翼型最大迎角处的气动力会得到一定程度的削弱,在小迎角下的气动力得到一定程度的增强,且脉动速度越大,翼型的非定常特性也越强.   相似文献   

9.
采用建立的高精度计算流体动力学(CFD)方法,针对旋翼非定常动态失速的三维(3D)效应特性进行研究。以Helishape 7AD旋翼为基准,开展三维效应对旋翼非定常气动特性的影响分析。研究了来流马赫数对旋翼翼型动态失速特性影响。在此基础上,针对三维情形旋翼动态失速非定常涡流动特性及诱导分离特征开展了数值分析,通过与二维情形对比表明:受旋翼旋转、轴向诱导速度等三维效应影响,旋翼桨叶剖面动态失速涡的产生、对流和脱落明显滞后于二维翼型情形,并且涡强度也更弱。越靠近桨叶内段,桨叶剖面非定常动态失速特性与二维旋翼翼型情形的差距越为明显。   相似文献   

10.
11.
《中国航空学报》2016,(2):358-374
A new experiment for airfoil dynamic stall is conducted by employing the advanced particle image velocimetry(PIV) technology in an open-return wind tunnel. The aim of this experimental investigation is to demonstrate the influences of different motion parameters on the convection velocity, position and strength of leading edge vortex(LEV) of airfoil under different dynamic stall conditions. Two different typical rotor airfoils, OA209 and SC1095, are measured at different free stream velocities, oscillation frequencies, and angles of attack. It is demonstrated by the measured data that the airfoil with larger leading edge radius could notably decrease the strength of LEV. The angle of attack(Ao A) of airfoil can obviously influence the dynamic stall characteristics of airfoil,and the LEV would be effectively inhibited by decreasing the mean pitch angle. In addition, the convection velocity of LEV is estimated in this measurement, and the results demonstrate that the influence of airfoil shape on convection velocity of LEV is limited, but the convection velocity of LEV would be increased by enlarging the oscillation frequency. Meanwhile, the convection velocity of LEV is a time variant value, and this value would increase as the LEV convects to the trailing edge of airfoil.  相似文献   

12.
OA212翼型主动流动控制的数值模拟研究   总被引:1,自引:0,他引:1  
采用数值模拟的方法,探讨了基于零质量射流的主动流动控制技术对OA212旋翼翼型动态失速的控制效果和控制特性.以积分形式雷诺平均Navier-Stokes(N-S)方程为控制方程,采用格心有限体积法进行求解.空间离散采用AUSM~+-up格式,时间推进采用含牛顿型LU-SGS子迭代的全隐式双时间法,且引入了预处理方法和多重网格方法加速收敛.通过在喷口上施加非定常边界条件来模拟射流对翼型绕流的影响.研究了不同类型射流、不同位置射流以及不同控制参数(频率、相位、偏角、动量系数等)对动态失速控制效果的影响.研究表明:零质量射流和传统的定常射流均可减小动态失速迟滞环的回线面积,但在提高最大升力方面零质量射流明显优于定常射流;在12%c和62%c处施加组合零质量射流的控制效果最为明显.  相似文献   

13.
对摆线桨三维全尺寸模型进行了非定常数值模拟。验证了两种嵌套网格方法的可靠性与适用性,针对二维/三维情况下摆线桨非定常涡流动特性及诱导分离特性开展了数值分析,重点研究了展向气动力随方位角的分布与全局流场的诱导速度分布,并分析了尾迹捕捉精度与涡量耗散特征。结果表明:受摆线桨切向速度、展向诱导速度等三维效应影响,两种计算结果的瞬态气动力极值差值达到44%。三维动态失速涡的产生、脱落与再附明显弱于二维翼型情况,这对于摆线桨非定常气动特性有较大影响。   相似文献   

14.
杨鹤森  赵光银  梁华  王博 《航空学报》2020,41(8):23605-023605
深入认识翼型动态失速,结合有效流动控制手段,对解决直升机、风力机桨叶等动态失速引起的高阻力、大低头力矩等气动问题具有重要意义。本文首先介绍了翼型动态失速的流场特点和危害,进而分析了缩减频率、雷诺数、马赫数以及翼型型面等参数对动态失速的影响,并在此基础上总结了常见的动态失速流动控制方法及其研究进展。等离子体气动激励易于产生快速、可控的宽频带气动激励,在动态失速控制领域具有潜力,本文着重介绍了等离子体气动激励动态失速控制的概念和流动控制原理,总结了近来年等离子体激励在翼型动态失速控制上的进展。  相似文献   

15.
基于充气前缘技术的旋翼翼型动态失速抑制   总被引:1,自引:2,他引:1  
动态失速的发生会在直升机旋翼桨叶和桨毂上产生高的交变扭转振动载荷,并限制直升机高速重载状态下的使用包线。本文利用计算流体力学(CFD)方法对基于充气前缘(ILE)技术的SC1095旋翼翼型动态失速抑制进行研究,分析了ILE抑制动态失速的控制机理,获得了ILE结构布置和充放气方式对动态失速的影响规律。研究表明:ILE可以有效抑制动态失速的发生;ILE最大膨胀程度越大,其抑制动态失速的效果越好,但膨胀程度过大后抑制效果开始减弱;ILE在翼型上仰至最大迎角时恰好达到最大膨胀状态,其对动态失速的抑制效果最好;ILE保持最大膨胀状态的时间长短对抑制效果影响不大;在翼型上仰至不同迎角时开始对ILE充气会对动态失速抑制有较大影响;ILE整流段与翼型连接位置对动态失速抑制有很大影响,整流段越长,抑制效果越好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号