首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对太阳系中全部的248997颗行星的探测问题,给出了一种关于探测飞行器的深空探测全局四维轨迹(t,x,y,z)优化方案,即飞行器从地球发射进入太阳系并采用小推力控制,优化方案的性能指标为飞行器与太阳系中全部行星中相遇和交会的星的数量最多并且燃料消耗最少。本方案给出了四维飞行轨迹进行全局优化的一套算法,该算法由搜索算法和四维轨迹优化算法组成。此搜索算法从太阳系的248997颗行星中寻找获得尽可能多的经过近地球3维走廊内的行星;而四维轨迹优化算法由改进的动态规划算法、基于最优控制理论的共轭梯度算法和静态参数优化算法组成,其中静态参数优化算法用于搜索最优发射时间窗口。基于该组合算法,通过长时间的大规模的飞行数字仿真,最终计算出探测器的四维最优飞行轨迹,在一年内路过了太阳系中全部行星中的12颗行星。  相似文献   

2.
The problem of optimization of a spacecraft transfer to the Apophis asteroid is investigated. The scheme of transfer under analysis includes a geocentric stage of boosting the spacecraft with high thrust, a heliocentric stage of control by a low thrust engine, and a stage of deceleration with injection to an orbit of the asteroid’s satellite. In doing this, the problem of optimal control is solved for cases of ideal and piecewise-constant low thrust, and the optimal magnitude and direction of spacecraft’s hyperbolic velocity “at infinity” during departure from the Earth are determined. The spacecraft trajectories are found based on a specially developed comprehensive method of optimization. This method combines the method of dynamic programming at the first stage of analysis and the Pontryagin maximum principle at the concluding stage, together with the parameter continuation method. The estimates are obtained for the spacecraft’s final mass and for the payload mass that can be delivered to the asteroid using the Soyuz-Fregat carrier launcher.  相似文献   

3.
The optimization problem for trajectories of spacecraft flight from the Earth to an asteroid is considered in this paper. The flight is realized in the central Newtonian gravitational field of the Sun with a possibility of gravitational maneuvers near planets. Perturbation maneuvers are taken into account using the method of point area of action with a limitation on the flyby altitude. The spacecraft is controlled by changing the value and direction of the engine thrust. The problem is solved taking into account constraints on the launch time, flight duration, and minimum distance to the Sun.  相似文献   

4.
Fedotov  G. G. 《Cosmic Research》2002,40(6):571-580
The problem of optimization of the trajectory of an interplanetary flight of a multistaged spacecraft using jet engines with high and low thrust is considered. The issues concerning the problem of choosing the main design parameters of a multistage spacecraft are touched upon. A mathematical model of start-to-finish optimization of all segments of the interplanetary flight trajectory is proposed. Using this model the specific features of flights to the orbits of satellites of Jupiter and Mars are studied.  相似文献   

5.
Trajectories of spacecraft with electro-jet low-thrust engines are studied for missions planning to deliver samples of matter from small bodies of the Solar System: asteroids Vesta and Fortuna, and Martian moon Phobos. Flight trajectories are analyzed for the mission to Phobos, the limits of optimization of payload spacecraft mass delivered to it are determined, and an estimate is given to losses in the payload mass when a low-thrust engine with constant outflow velocity is used. The model of an engine with ideally regulated low thrust is demonstrated to be convenient for calculations and analysis of flight trajectories of a low-thrust spacecraft.  相似文献   

6.
The problem of optimal control over many-revolution spacecraft orbit transfers between circular coplanar orbits of satellites is considered. The spacecraft flight is controlled by a thrust vector of a jet engine with restricted thrust (JERT). The mass expenditure is minimized at a limited time of flight. The optimal control problem is solved based on the maximum principle. The boundary value problem of the maximum principle is solved numerically using the shooting method. A modified computation scheme of the shooting method is suggested (multi-point shooting), as well as a method (correlated with the scheme) of choosing the initial approximation with the use of a solution to the optimization problem in the impulse formulation. The scheme and method allow one to construct many-revolution spacecraft orbit transfers.  相似文献   

7.
We consider the problem of injection of a spacecraft into the heliocentric Earth's orbit ahead and/or behind the Earth by 60° and 120° in heliographic longitude. The range of solar and astrophysical problems for which these orbits are necessary is reviewed. The variants of injection into heliocentric orbits work from a low around-Earth orbit with one turn-on of the engine in this orbit and one turn-on at the end of the injection trajectory. In this case, it turns out to be more profitable to put spacecraft into orbit for three or even four revolutions of the Earth about the Sun. The velocities necessary for the start from a low around-Earth orbit, the velocities at the final point of injection, and the fuel mass (relative to the spacecraft mass) necessary for injection are estimated. The problems for which injection to similar orbits is executed, using the low-thrust engine and with a combined regime of injection, are also considered.  相似文献   

8.
This paper presents a fixed-time glideslope guidance algorithm that is capable of guiding the spacecraft approaching a target vehicle on a quasi-periodic halo orbit in real Earth–Moon system. To guarantee the flight time is fixed, a novel strategy for designing the parameters of the algorithm is given. Based on the numerical solution of the linearized relative dynamics of the Restricted Three-Body Problem (expressed in inertial coordinates with a time-variant nature), the proposed algorithm breaks down the whole rendezvous trajectory into several arcs. For each arc, a two-impulse transfer is employed to obtain the velocity increment (delta-v) at the joint between arcs. Here we respect the fact that instantaneous delta-v cannot be implemented by any real engine, since the thrust magnitude is always finite. To diminish its effect on the control, a thrust duration as well as a thrust direction are translated from the delta-v in the context of a constant thrust engine (the most robust type in real applications). Furthermore, the ignition and cutoff delays of the thruster are considered as well. With this high-fidelity thrust model, the relative state is then propagated to the next arc by numerical integration using a complete Solar System model. In the end, final corrective control is applied to insure the rendezvous velocity accuracy. To fully validate the proposed guidance algorithm, Monte Carlo simulation is done by incorporating the navigational error and the thrust direction error. Results show that our algorithm can effectively maintain control over the time-fixed rendezvous transfer, with satisfactory final position and velocity accuracies for the near-range guided phase.  相似文献   

9.
The use of combinations of chemical and electric jet engines in the spacecraft designs results in a multistage vehicle configuration and in related problems of the optimum distribution of masses between the stages, the problems of flight trajectory optimization, and the problems of choosing the design parameters of a spacecraft. The appropriate issues are considered using flights to Mars as an example. The conditions for the optimum matching of high and low thrust trajectory segments are presented. The model of the simultaneous optimization of the geocentric and heliocentric legs of the trajectory is proposed. One- and two-orbit optimum trajectories of flight are investigated and analyzed.  相似文献   

10.
The problem of optimization of the interplanetary trajectory of flight for a multistage spacecraft with high- and low-thrust engines into the Jupiter satellite orbit is considered. Low-thrust engines (stationary plasma engines) are used on a heliocentric flight segment. Their operation is maintained with electric power supply from solar batteries. The principal feasibility of the realization of such a project is shown, and estimations of the mass of a spacecraft placed into Jupiter's satellite orbit are presented.  相似文献   

11.
A. Miele  T. Wang 《Acta Astronautica》1992,26(12):855-866
The aeroassisted flight experiment (AFE) refers to an experimental spacecraft to be launched and then recovered by the Space Shuttle. It simulates a transfer from a geosynchronous Earth orbit (GEO) to a low Earth orbit (LEO). In this paper, with reference to an AFE-type spacecraft, an actual GEO-to-LEO transfer is considered under the following assumptions: the GEO and LEO orbital planes are identical; both the initial and final orbits are circular; the initial phase angle is given, while the final phase angle is free. The aeroassisted orbital transfer trajectory involves three branches: a preatmospheric branch, GEO-to-entry; an atmospheric branch, entry-to-exit; a post-atmospheric branch, exit-to-LEO. The optimal trajectory is determined by minimizing the total characteristic velocity. The optimization is performed with respect to the velocity impulses at GEO, LEO, and the time history of the angle of bank during the atmospheric pass. It is assumed that the entry path inclination is free and that the angle of attack is constant, = 17.0 deg. The sequential gradient-restoration algorithm is used to compute the optimal trajectory and it is shown that the best atmospheric pass is to be performed with constant angle of bank. The resulting optimal trajectory constitutes an ideal nominal trajectory for the generation of guidance trajectories for two reasons: the fact that the low value of the characteristic velocity is accompanied by relatively low values of the peak heating rate and the peak dynamic pressure; and the simplicity of the control distribution, requiring constant angle of bank.  相似文献   

12.
《Acta Astronautica》1999,44(5-6):219-225
The spacecraft flights to the Near-Earth asteroid in order to give an impact influence on the asteroid, correct its orbit and prevent the asteroid’s collision with the Earth are analyzed.In the first part, the impulse flights are analyzed in the Lambert approach. There are determined the optimal trajectories maximizing the asteroid deviation from the Earth.In the second part, the flights with the chemical and electric-jet engines are analyzed. The high thrust is used to launch the spacecraft from the geocentric orbit, and the low thrust is applied for the heliocentric motion. On the base of optimal impulse transfer, the optimal low thrust trajectories are determined using Pontryagin maximum principle.The numerical results are given for the flight to the asteroid Toutatis. Parameters of the spacecraft impact on the asteroid are determined. The asteroid deviation from the Earth caused by the spacecraft influence is presented.  相似文献   

13.
The problem of the optimal spacecraft’s insertion from the Earth into the high circular polar Moon Artificial Satellite’s orbit (MAS) with a radius of 4000–8000 km has been investigated. A comparison of single- and three-impulse insertion schemes has been performed. The analysis was made taking into account the disturbances from the lunar gravity field harmonics and the gravity fields of the Earth and the Sun, as well as the engine’s limited thrust. It has been shown that the three-impulse transfer from the initial selenocentric hyperbola of the approach into the considered final high MAS orbit is noticeably better with respect to the final mass than the ordinary single-impulse deceleration. The control parameters that implement this maneuver and provide nearly the same energy expenses as in the Keplerian case have been presented. It was found that, in contrast to the Keplerian case, in the considered case of the real gravity field, there is the optimal maximum distance of the maneuver. Recently, the Moon exploration problem became actual again.  相似文献   

14.
In this paper a low-altitude orbit-to-orbit minimum-fuel transfer is discussed. The spacecraft consists of a high-thrust solid stage and a low-thrust liquid stage. The thrust acceleration ratio is greater than 500. Both initial and final orbits are circular but non-coplanar. In particular, altitudes of 300 and 500–600 km together with an inclination difference of about 16 deg are considered. J2 and drag perturbations and flight constraints are taken into account. The current discussion is centred on the nominal trajectory of a case of real interest.  相似文献   

15.
Akhmetshin  R. Z. 《Cosmic Research》2004,42(3):238-249
Low-thrust flights from high-elliptic orbits are of considerable interest, since they allow one to decrease (compared to high-thrust flights) the propulsion consumption and to reduce the flight duration. At the same time, in comparison with the spiral unwinding flights from low near-circular orbits, this scheme minimizes the harmful effect of the radiation belts. Based on the maximum principle, the problem of optimization is reduced to a two-point boundary value problem, which is solved numerically using the modified Newton method. A method is suggested to obtain the initial approximation for solving the boundary value problem. The method takes advantage of the idea of transition from an approximately optimal trajectory to the optimal one. Two problems, which have different low-thrust models, are considered: one with permanently acting low thrust and the other with the possibility of turning it on/off. In both cases no restrictions are imposed on the thrust direction. A comparison of these problems is made. We investigated (i) what gain in the final mass can be attained when passing from the first to the second problem, (ii) at the cost of what loss in flight duration this can be achieved, and (iii) what changes in the optimal program of control must be done in this case.  相似文献   

16.
Two problems in studying deep space are discussed that are, in the author's opinion, the most important. The first is soil sampling from the smaller bodies of the Solar System, such as the Martian satellite Phobos and asteroids of groups C and S of the Main Asteroid Belt. This soil (so-called primordial substance) can help to elucidate some problems of the Solar System's formation; in particular, to construct a reliable model of the internal structure of the Earth. The second problem is to reveal all sufficiently large asteroids penetrating inside the Earth's orbit and to catalog those asteroids that are hazardous from the viewpoint of collision with the Earth. To this end, it is suggested to launch five or six Earth-orbiting spacecraft with telescopes capable of recording objects down to a brightness of 22– 25 m . It is pointed out that both problems can be solved in the near future using comparatively cheap standardized space vehicles launched into near-Earth orbits by the Soyuz carrier rocket and boosted further by electro-jet engines of small thrust.  相似文献   

17.
极坐标系连续常值推力机动分析   总被引:1,自引:0,他引:1  
连续常值推力是空间飞行常用的轨道机动方式,在空间交会与星际航行使命中具有重要的应用价值。其中,小推力适合于地球轨道航天器交会机动,而切向或周向推力以及较大的正径向推力可用于脱离地球引力场的逃逸飞行,执行星际交会使命。应用常推力作用下的极坐标系质心运动方程,对机动推力的量值没有限制;在航天器交会应用中,对相对距离也无要求。这种方法可直接获得向径与速度等轨道参数随时间或极角(绕地心的转动角)的变化,便于分析轨道转移与逃逸运动,有助于飞行使命与运动轨迹的设计。特别是,若机动转移的初轨为圆轨道,在推力较小、飞行时间不长的情况下,应用无量纲形式运动方程,可获得具有工程应用价值的近似解。文章给出一些有关的结果与应用案例。  相似文献   

18.
The main characteristics of the trajectory design of space observatory missions in the Earth–Sun libration point region is highlighted, based on experiences gained in work performed by the authors on ESA missions. Free transfers always lead to large-amplitude orbits around L2, their properties (amplitudes, phases, non-linear behaviour) are related to the conditions at perigee. Launch scenarios with different degrees of freedom in the perigee geometry and different strategies of sharing the apogee raising between launcher and spacecraft propulsion for Soyuz (with circular parking orbit or direct injection) and Ariane 5 launches from French Guiana will be discussed. Besides the orbit selection and transfer analysis, an important aspect of libration missions is the maintenance of the operational orbit. For some missions it is required to maximise the time between maintenance manoeuvres, and for some the thrust authority is limited. In both cases the exponential nature of the state transition matrix has to be considered. If the equivalent velocity error in the unstable direction becomes too large, the orbit can become unrecoverable, leading to a departure from the environment of the Lagrange point within a few months.  相似文献   

19.
曹喜滨  张相宇  王峰 《宇航学报》2013,34(8):1047-1054
针对日-地Halo轨道到日-火Halo轨道的小推力轨道转移问题,给出一种基于不变流形理论和Gauss伪谱法的优化设计方法。首先,在日心惯性坐标系中建立小推力轨道优化模型,并基于不变流形理论给出轨道转移中流形出口和入口的选择原则,应用该原则在日-地系统中选择流形出口,在日-火系统中选择流形入口,并将其作为轨道转移的初末状态;然后基于Gauss伪谱法将最优控制问题离散化为非线性规划(NLP)问题,并采用基于逆多项式的形状算法给出了NLP初值的计算方法;最后对该轨道转移问题进行了数学仿真。仿真结果表明:Gauss伪谱法可有效用于小推力日-火Halo轨道转移的优化,且采用逆多项式形状算法得到的初值具有初始误差小,使得NLP收敛速度快的特点。  相似文献   

20.
The information on the project being developed in Brazil for a flight to binary or triple near-Earth asteroid is presented. The project plans to launch a spacecraft into an orbit around the asteroid and to study the asteroid and its satellite within six months. Main attention is concentrated on the analysis of trajectories of flight to asteroids with both impulsive and low thrust in the period 2013-2020. For comparison, the characteristics of flights to the (45) Eugenia triple asteroid of the Main Belt are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号