首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The solar wind charge state and elemental compositions have been measured with the Solar Wind Ion Composition Spectrometers (SWICS) on Ulysses and ACE for a combined period of about 25 years. This most extensive data set includes all varieties of solar wind flows and extends over more than one solar cycle. With SWICS the abundances of all charge states of He, C, N, O, Ne, Mg, Si, S, Ar and Fe can be reliably determined (when averaged over sufficiently long time periods) under any solar wind flow conditions. Here we report on results of our detailed analysis of the elemental composition and ionization states of the most unbiased solar wind from the polar coronal holes during solar minimum in 1994–1996, which includes new values for the abundance S, Ca and Ar and a more accurate determination of the 20Ne abundance. We find that in the solar minimum polar coronal hole solar wind the average freezing-in temperature is ∼1.1×106 K, increasing slightly with the mass of the ion. Using an extrapolation method we derive photospheric abundances from solar wind composition measurements. We suggest that our solar-wind-derived values should be used for the photospheric ratios of Ne/Fe=1.26±0.28 and Ar/Fe=0.030±0.007.  相似文献   

2.
In this discussion of observational constraints on the source regions and acceleration processes of solar wind, we will focus on the ionic composition of the solar wind and the distribution of charge states of heavy elements such as oxygen and iron. We first focus on the now well-known bi-modal nature of solar wind, which dominates the heliosphere at solar minimum: Compositionally cool solar wind from polar coronal holes over-expands, filling a much larger solid angle than the coronal holes on the Sun. We use a series of remote and in-situ characteristics to derive a global geometric expansion factor of?~5. Slower, streamer-associated wind is located near the heliospheric current sheet with a width of 10–20°, but in a well-defined band with a geometrically small transition width. We then compute charge states under the assumption of thermal electron distributions and temperature, velocity, and density profiles predicted by a recent solar wind model, and conclude that the solar wind originates from a hot source at around 1 million?K, characteristic of the closed corona.  相似文献   

3.
Recent observations with UVCS on SOHO of high outflow velocities of O5+ at low coronal heights have spurred much discussion about the dynamics of solar wind acceleration. On the other hand, O6+ is the most abundant oxygen charge state in the solar wind, but is not observed by UVCS or by SUMER because this helium-like ion has no emission lines falling in the wave lengths observable by these instruments. Therefore, there is considerable interest in observing O5+ in situ in order to understand the relative importance of O5+ with respect to the much more abundant O6+. High speed streams are the prime candidates for the search for O5+ because all elements exhibit lower freezing-in temperatures in high speed streams than in the slow solar wind. The Ulysses spacecraft was exposed to long time periods of high speed streams during its passage over the polar regions of the Sun. The Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses is capable of resolving this rare oxygen charge state. We present the first measurement of O5+ in the solar wind and compare these data with those of the more abundant oxygen species O6+ and O7+. We find that our observations of the oxygen charge states can be fitted with a single coronal electron temperature in the range of 1.0 to 1.2 MK assuming collisional ionization/recombination equilibrium with an ambient Maxwellian electron gas. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Recent SOHO/UVCS observations indicate that the perpendicular proton and ion temperatures are much larger than electron temperatures. In the present study we simulate numerically the solar wind flow in a coronal hole with the two-fluid approach. We investigate the effects of electron and proton temperatures on the solar wind acceleration by nonlinear waves. In the model the nonlinear waves are generated by Alfvén waves with frequencies in the 10-3 Hz range, driven at the base of the coronal hole. The resulting electron and proton flow profile exhibits density and velocity fluctuations. The fluctuations may steepen into shocks as they propagate away from the sun. We calculate the effective proton temperature by combining the thermal and wave velocity of the protons, and find qualitative agreement with the proton kinetic temperature increase with height deduced from the UVCS Ly-α observations by Kohl et al. (1998). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
We take stock of recent observations that identify the episodic plasma heating and injection of Alfvénic energy at the base of fast solar wind (in coronal holes). The plasma heating is associated with the occurrence of chromospheric spicules that leave the lower solar atmosphere at speeds of order 100?km/s, the hotter coronal counterpart of the spicule emits radiation characteristic of root heating that rapidly reaches temperatures of the order of 1?MK. Furthermore, the same spicules and their coronal counterparts (“Propagating Coronal Disturbances”; PCD) exhibit large amplitude, high speed, Alfvénic (transverse) motion of sufficient energy content to accelerate the material to high speeds. We propose that these (disjointed) heating and accelerating components form a one-two punch to supply, and then accelerate, the fast solar wind. We consider some compositional constraints on this concept, extend the premise to the slow solar wind, and identify future avenues of exploration.  相似文献   

6.
von Steiger  R.  Zurbuchen  T.H.  Geiss  J.  Gloeckler  G.  Fisk  L.A.  Schwadron  N.A. 《Space Science Reviews》2001,97(1-4):123-127
The source region of solar wind plasma is observed to be directly reflected in the compositional pattern of both elemental and charge state compositions. Slow solar wind associated with streamers shows higher freeze-in temperatures and larger FIP enhancements than coronal hole associated wind. Also, the variability of virtually all compositional parameters is much higher for slow solar wind compared to coronal hole associated wind. We show that these compositional patterns persist even though stream-stream interactions complicate the identification based on in situ plasma parameters. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
In this paper I will briefly summarize the present status of our knowledge on the four different sorts of solar wind, their sources and their short- and long-term variations. First: the fast solar wind in high-speed streams that emerges from coronal hole regions. Second: the slow solar wind emerging from the non-active Sun near the global heliospheric current sheet above helmet streamers and underlying active regions. Third: the slow solar wind filling most of the heliosphere during high solar activity, emerging above active regions in a highly turbulent state, and fourth: the plasma expelled from the Sun during coronal mass ejections. The coronal sources of these different flows vary dramatically with the solar activity cycle.  相似文献   

8.
The analysis of data taken by SUMER near disk center, where a small coronal hole is observed in EIT images, is performed. From the measurements of Doppler non-thermal velocities and intensities, we search for the diagnostics and the signature of small scale structures in the coronal hole using transition region lines. Transition region lines in the range of 7 × 104 K to 2.5 × 105 K have a non-thermal velocity excess of 4.0 to 5.5 km s-1 relative to the contiguous quiet Sun. While the average intensity is lower in the coronal hole than in the quiet area, this result shows an increase of turbulence at the base of the high speed solar wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
In the 25 months since Jupiter flyby, the Ulysses spacecraft has climbed southward to a heliolatitude of 56°. This transit has been marked by an evolution from slow, dense coronal streamer belt solar wind through two regions where the rotation of the Sun carried Ulysses back and forth between streamer belt and polar coronal hole flows, and finally into a region of essentially continuous fast, low density solar wind from the southern polar coronal hole. Throughout these large changes, the momentum flux normalized to 1 AU displays very little systematic variation. In addition, the bulk properties of the polar coronal hole solar wind are quite similar to those observed in high speed streams in the ecliptic plane at 1 AU. Coronal mass ejections and forward and reverse shocks associated with corotating interaction regions have also been observed at higher heliolatitudes, however they are seen less frequently with increasing southern heliolatitude. Ulysses has thus far collected data from 20° of nearly contiguous solar wind flows from the polar coronal hole. We examine these data for characteristic variations with heliolatitude and find that the bulk properties in general show very little systematic variation across the southern polar coronal hole so far.  相似文献   

10.
Solar wind charge states measured by ULYSSES/SWICS in the south polar hole   总被引:1,自引:0,他引:1  
The Ulysses mission now has an extensive data base covering several passes of the south polar coronal hole as the spacecraft proceeds to higher latitudes. Using composition measurements from the SWICS experiment on the Ulysses spacecraft, we have obtained charge state distributions, and hence inferred coronal ionization temperatures, for several solar wind species. In particular, we present an overview of Oxygen ionization temperature measurements, based on the O7+/O6+ ratio, for the period January 1993 until April 1994 (23°S to 61°S heliographic latitude), and detailed Oxygen, Silicon and Iron charge state distributions of the south polar hole during a two month period of nearly continuous hole coverage, Dec 1993–Jan 1994 (45°S to 52°S heliographic latitude).  相似文献   

11.
Coronal holes have been identified as source regions of the fast solar wind, and MHD wave activity has been detected in coronal holes by remote sensing, and in situ in fast solar wind streams. I review some of the most suggestive wave observations, and discuss the theoretical aspects of MHD wave heating and solar wind acceleration in coronal holes. I review the results of single fluid 2.5D MHD, as well as multi-fluid 2.5D MHD models of waves in coronal holes, the heating, and the acceleration of the solar wind be these waves.  相似文献   

12.
This is the first study of the isotopic composition of solar wind helium with the SWICS time-of flight mass spectrometer. Although the design of SWICS is not optimized to measure3He abundances precisely,4He/3He flux ratios can be deduced from the data. The long term ratio is 2290±200, which agrees with the results obtained with the ICI magnetic mass spectrometer on ISEE-3 and with the Apollo SWC foil experiments.The ULYSSES spacecraft follows a trajectory which is ideal for the study of different solar wind types. During one year, from mid-1992 to mid-1993, it was in a range of heliographic latitudes where a recurrent fast stream from the southern polar coronal hole was observed every solar rotation. Solar wind bulk velocities ranged from 350 km/s to 950 km/s which would, in principle allow us to identify velocity-correlated compositional variations. Our investigation of solar wind helium, however, shows an isotopic ratio which does not depend on the solar wind speed.  相似文献   

13.
14.
Pneuman  G. W. 《Space Science Reviews》1986,43(1-2):105-138
In this review, we consider the central physical aspects pertinent to the acceleration of the solar wind. Special importance is placed on the high-speed streams since the properties of these structures seem to strain the various theoretical explanations the most. Heavy emphasis is also given to the observations — particularly as to what constraints they place on the theories. We also discuss certain sporadic events such as spicules, macrospicules, X-ray bright points, and outflows seen in the EUV associated with the explosive events, jets, and coronal bullets which could be of relevance to this problem.Three theoretical concepts pertaining to the solar wind acceleration process are examined — purely thermal acceleration with and without extended heating, acceleration due to Alfvén wave pressure, and diamagnetic acceleration. Emphasis is given to how well these theories meet the constraints imposed by the observations. Diamagnetism is argued to be a powerful ingredient in solar wind theory, both in the light of observed sporatic outflows seen in the chromosphere and transition region and also because of its effectiveness in increasing the flow speed and producing strong acceleration near the Sun in line with coronal hole observations.  相似文献   

15.
Between its launch in October 1990 and the end of 1993, approximately 160 fast collisionless shock waves were observed in the solar wind by the Ulysses space probe. During the in-ecliptic part of the mission, to February 1992, the observed shock waves were first caused mainly by solar transient events following the solar maximum and the reorganisation of the large scale coronal fields. With the decay in solar activity, relatively stable Corotating Interaction Regions (CIRs) were observed betwen 3 and 5.4 AU, each associated with at least one forwardreverse shock pair. During the out-of-ecliptic phase of the orbit, from February 1992 onwards, CIRs and shock pairs associated with them continued to dominate the observations. From July 1992, Ulysses encountered the fast solar wind flow from the newly developed southern polar coronal hole, and from May 1993 remained in the unipolar magnetic region associated with this coronal hole. At latitudes beyond 30°, CIRs were associated almost exclusively with reverse shocks only. A comprehensive list of shock waves identified in the magnetic field and solar wind plasma data from Ulysses is given in Table 1. The principal characteristics were determined mainly from the magnetic field data. General considerations concerning the determination of shock characteristics are outlined in the Introduction.  相似文献   

16.
We present a solar wind model which takes into account the possible origin of fast solar wind streams in coronal plumes. We treat coronal holes as being made up of essentially 2 plasma species, denser, warmer coronal plumes embedded in a surrounding less dense and cooler medium. Pressure balance at the coronal base implies a smaller magnetic field within coronal plumes than without. Considering the total coronal hole areal expansion as given, we calculate the relative expansion of plumes and the ambient medium subject to transverse pressure balance as the wind accelerates. The magnetic flux is assumed to be conserved independently both within plumes and the surrounding coronal hole. Magnetic field curvature terms are neglected so the model is essentially one dimensional along the coronal plumes, which are treated as thin flux-tubes. We compare the results from this model with white-light photographs of the solar corona and in-situ measurements of the spaghetti-like fine-structure of high-speed winds.  相似文献   

17.
Radio occultation, ultraviolet, and white-light measurements have expanded our knowledge of the morphology of density and velocity in polar coronal holes, and made it possible to carry out the first systematic comparisons between the Ulysses solar wind measurements and quantitative white-light observations of the solar corona. This paper summarizes the rationale and salient features of this new approach which has been used to relate the solar wind observed by Ulysses in 1993–1995 to the inner corona. The statistical characteristics (average, standard deviation, and autocorrelation function) of the Ulysses density measurements of the fast wind are found to be mirrored in those of polarized brightness measurements of path-integrated density made by the High Altitude Observatory (HAO) Mauna Loa K-coronagraph at 1.15 R . These results reinforce the conclusions from comparisons between measurements of the outer and inner corona. They show that the polar coronal hole extends radially into the solar wind, and that sources of the fast wind are not limited to coronal holes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Coronal holes are the coolest and darkest regions of the upper solar atmosphere, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. During the years of the solar minima, coronal holes are generally confined to the Sun??s polar regions, while at solar maxima they can also be found at lower latitudes. Waves, observed via remote sensing and detected in-situ in the wind streams, are most likely responsible for the wind and several theoretical models describe the role of MHD waves in the acceleration of the fast solar wind. This paper reviews the observational evidences of detection of propagating waves in these regions. The characteristics of the waves, like periodicities, amplitude, speed provide input parameters and also act as constraints on theoretical models of coronal heating and solar wind acceleration.  相似文献   

19.
Using the high-resolution mass spectrometer CELIAS/MTOF on board SOHO we have measured the solar wind isotope abundance ratios of Si, Ne, and Mg and their variations in different solar wind regimes with bulk velocities ranging from 330 km/s to 650 km/s. Data indicate a small systematic depletion of the heavier isotopes in the slow solar wind on the order of (1.4±1.3)% per amu (2σ-error) compared to their abundances in the fast solar wind from coronal holes. These variations in the solar wind isotopic composition represent a pure mass-dependent effect because the different isotopes of an element pass the inner corona with the same charge state distribution. The influence of particle mass on the acceleration of minor solar wind ions is discussed in the context of theoretical models and recent optical observations with other SOHO instruments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
This paper contains a summary of the topics treated in the working group on abundance variations in the solar atmosphere and in the solar wind. The FIP bias (overabundance of particles with low First Ionization Potentials over photospheric abundances) in coronal holes and coronal hole associated solar wind amounts to values between 1 and 2. The FIP bias in the slow solar wind is typically a factor 4, consistent with optical observations in streamers. In order to distinguish between different theoretical models which make an attempt to explain the FIP bias, some observable parameters must be provided. Unfortunately, many models are deficient in this respect. In addition to FIP fractionation, gravitational settling of heavy elements has been found in the core of long lived streamers. The so-called electron 'freeze in' temperatures derived from in situ observed ionization states of minor ions in the fast wind are significantly higher than the electron temperatures derived from diagnostic line ratios observed in polar coronal holes. The distinction between conditions in plumes and interplume lanes needs to be further investigated. The 'freeze in' temperatures for the slow solar wind are consistent with the electron temperatures derived for streamers. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号