首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
McComas  D.J.  Goldstein  R.  Gosling  J.T.  Skoug  R.M. 《Space Science Reviews》2001,97(1-4):99-103
By the time of the 34th ESLAB symposium, dedicated to the memory of John Simpson, Ulysses had nearly reached its peak southerly latitude in its second polar orbit. The global solar wind structure observed thus far in Ulysses' second orbit is remarkably different from that observed over its first orbit. In particular, Ulysses observed highly irregular solar wind with less periodic stream interaction regions, much more frequent coronal mass ejections, and only a single, short interval of fast solar wind. Ulysses also observed the slowest solar wind seen thus far in its ten-year journey (∼270 km s−1). The complicated solar wind structure undoubtedly arises from the more complex coronal structure found around solar activity maximum, when the large polar coronal holes have disappeared and coronal streamers, small-scale coronal holes, and frequent CMEs are found at all heliolatitudes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The large-scale coronal magnetic fields of the Sun are believed to play an important role in organizing the coronal plasma and channeling the high and low speed solar wind along the open magnetic field lines of the polar coronal holes and the rapidly diverging field lines close to the current sheet regions, as has been observed by the instruments aboard the Ulysses spacecraft from March 1992 to March 1997. We have performed a study of this phenomena within the framework of a semi-empirical model of the coronal expansion and solar wind using Spartan, SOHO, and Ulysses observations during the quiescent phase of the solar cycle. Key to this understanding is the demonstration that the white light coronagraph data can be used to trace out the topology of the coronal magnetic field and then using the Ulysses data to fix the strength of the surface magnetic field of the Sun. As a consequence, it is possible to utilize this semi-empirical model with remote sensing observation of the shape and density of the solar corona and in situ data of magnetic field and mass flux to predict values of the solar wind at all latitudes through out the solar system. We have applied this technique to the observations of Spartan 201-05 on 1–2 November, 1998, SOHO and Ulysses during the rising phase of this solar cycle and speculate on what solar wind velocities Ulysses will observe during its polar passes over the south and the north poles during September of 2000 and 2001. In order to do this the model has been generalized to include multiple streamer belts and co-located current sheets. The model shows some interesting new results. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
MacDowall  R.J.  Lin  Naiguo  McComas  D.J. 《Space Science Reviews》2001,97(1-4):141-146
We examine the occurrence and intensity of Langmuir wave activity (electrostatic waves at the electron plasma frequency) during the solar minimum and solar maximum orbits of Ulysses. At high latitudes during the solar minimum orbit, occurrences of Langmuir waves in magnetic holes were frequent; in the second orbit, they were less common. This difference, in comparison with observations from the first Ulysses fast heliolatitude scan, suggests that Langmuir wave activity in magnetic holes is enhanced in solar wind from polar coronal holes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Gosling  J.T.  Forsyth  R.J. 《Space Science Reviews》2001,97(1-4):98-98
We have identified 20 coronal mass ejections, or CMEs, in the solar wind in the Ulysses data obtained between S30° and S75° during the second polar orbit. Unlike CME-driven disturbances observed at high latitudes during Ulysses’ first polar orbit, these disturbances had plasma and magnetic field characteristics similar to those observed in the ecliptic plane near 1 AU when one allows for evolution with heliocentric distance. Here we provide a brief overview of CME observations at high latitudes both close to and far from the Sun, with emphasis on the recent Ulysses measurements on the rising portion of solar cycle 23. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The spectroscopic observations of the Ultraviolet Coronagraph Spectrometer (UVCS), on board the SOHO observatory, allow the study and the full characterization of the expansion of the solar atmosphere by means of measurements of the outflow speeds and the physical properties of the wind, directly in the region where the solar plasma is heated and accelerated: the extended corona. During solar minimum, when the magnetic configuration of the corona is rather simple, the open magnetic fields emerging from the wide polar coronal holes channel toward the heliosphere both the fast and the slow wind. The fast wind flows along flux tubes with lower areal divergence than the slow wind which is guided by flux tubes characterized by non-monotonic areal expansion functions. Differences in the physical properties, such as kinetic temperature, electron density, composition and density fluctuations, of the fast and slow wind in the corona are discussed.  相似文献   

6.
We present a solar wind model which takes into account the possible origin of fast solar wind streams in coronal plumes. We treat coronal holes as being made up of essentially 2 plasma species, denser, warmer coronal plumes embedded in a surrounding less dense and cooler medium. Pressure balance at the coronal base implies a smaller magnetic field within coronal plumes than without. Considering the total coronal hole areal expansion as given, we calculate the relative expansion of plumes and the ambient medium subject to transverse pressure balance as the wind accelerates. The magnetic flux is assumed to be conserved independently both within plumes and the surrounding coronal hole. Magnetic field curvature terms are neglected so the model is essentially one dimensional along the coronal plumes, which are treated as thin flux-tubes. We compare the results from this model with white-light photographs of the solar corona and in-situ measurements of the spaghetti-like fine-structure of high-speed winds.  相似文献   

7.
Wohlmuth  R.  Plettemeier  D.  Edenhofer  P.  Bird  M.K.  Efimov  A.I.  Andreev  V.E.  Samoznaev  L.N.  Chashei  I.V. 《Space Science Reviews》2001,97(1-4):9-12
Temporal power spectra have been computed from recordings of the downlink frequency fluctuations of the Galileo and Ulysses radio signals during their solar conjunctions. Both the equatorial streamer belt and the polar coronal holes were investigated over a range of ray path solar offset distances from 4 to 80 R. By combining gapless data from successive tracking passes, Doppler scintillation power spectra could be computed down to extremely low frequencies. Some spectra feature a low-frequency turnover at frequencies around 0.1 mHz that could be interpreted as an outer scale of density turbulence in the coronal plasma. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
The simple tilted dipole picture of Corotating Interaction Regions which prevailed during the first polar pass of Ulysses no longer applies since the Sun entered a more active phase. Recent observations show that CIRs still persist, though the large polar coronal holes of solar minimum shrink to smaller areas and move to lower latitudes. We present 3-D simulations for the cosmic-ray intensity variations in a model with non-polar high speed streams. Latitudinal and recurrent time-variations are discussed, but more detailed and realistic simulations are required before quantitative comparisons with observations can be made. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
We present a simple technique describing how limits on the helium abundance, , the ratio of helium to proton number density, can be inferred from measurements of the electron density, temperature and their gradients below 1.5R s. As an illustration, we apply this technique to emission line intensities in the extreme ultraviolet, measured in polar coronal holes. The example indicates that can be significantly large in the inner corona. This technique could be applicable to the more extensive data to be obtained from coordinated ground and space-based observations during the Ulysses south polar passage and the Spartan flight, and subsequently during the SOHO mission. Limits on the helium abundance in the solar wind can thus be derived from its source region and compared to interplanetary values.  相似文献   

10.
Lario  D.  Roelof  E.C.  Forsyth  R.J.  Gosling  J.T. 《Space Science Reviews》2001,97(1-4):249-252
We present observations of energetic (0.34–8 MeV) ions from the Ulysses spacecraft during its second ascent to southern high latitude regions of the heliosphere. We cover the period from January 1999 until mid-2000 as Ulysses moved from 5.2 AU and 18° S to 3.5 AU and 55° S. In contrast to the long-lived and well-defined ∼26-day recurrences that were observed throughout Ulysses‘ first southern pass, energetic ion fluxes during the first portion of the Ulysses’ second polar orbit are highly irregular. Although corotating interaction regions (CIRs) are clearly present in solar wind and magnetic field data throughout the first half of 1999, their effects on energetic ion intensities are quite different from what they were in 1992–1993. No dominant strictly recurrent ion flux increases are observed in association with the arrival of these CIRs. Correspondingly, there is no stable structure of large polar coronal holes during the same period. Isolated transient solar energetic particle (SEP) events are observed at low and high latitudes. We compare energetic ion observations from the ACE and Ulysses spacecraft during the first half of 1999 to determine the influence of these SEP events in the observed recurrent CIR structure. Such SEP events occurred only occasionally during 1992–1993, but when they occurred, they obscured the recurrences in a manner similar to that observed in 1999–2000. We therefore conclude that the basic differences in the behavior of energetic ion events between the first and second southern passes are due to the short life of the corotating structure and the higher frequency of SEP events occurring in 1999–2000. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Suess  S. 《Space Science Reviews》2001,97(1-4):55-58
Microstreams and pressure balance structures in fast solar wind were more easily detected at Ulysses at 2.2 AU over the poles than at Helios at 0.3 AU. This is because solar rotation leads to dynamic interactions between different speed regimes at a rate that depends on latitude for the same size features. Dynamic interactions make structures more difficult to detect with increasing distance from the Sun. At solar maximum, Ulysses will sample high latitude solar wind coming from streamers, providing information on fine structure at the tops of streamers and on the source of slow solar wind. Examples are given here of the detectability of various sized structures at Ulysses when it is over the polar regions of the Sun. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
The dynamics of the solar corona as observed during solar minimum with the Ultraviolet Coronagraph Spectrometer, UVCS, on SOHO is discussed. The large quiescent coronal streamers existing during this phase of the solar cycle are very likely composed by sub-streamers, formed by closed loops and separated by open field lines that are channelling a slow plasma that flows close to the heliospheric current sheet. The polar coronal holes, with magnetic topology significantly varying from their core to their edges, emit fast wind in their central region and slow wind close to the streamer boundary. The transition from fast to slow wind then appears to be gradual in the corona, in contrast with the sharp transition between the two wind regimes observed in the heliosphere. It is suggested that speed, abundance and kinetic energy of the wind are modulated by the topology of the coronal magnetic field. Energy deposition occurs both in the slow and fast wind but its effect on the kinetic temperature and expansion rate is different for the slow and fast wind.  相似文献   

13.
Moraal and Steenberg (1999), showed that the peak energy in the anomalous cosmic ray spectra is independent of the radial distance up to a few AU away from the termination shock but dependent on the solar wind speed, the radius of the termination shock and the scattering strength. In this paper we will discuss the variation of the cosmic ray oxygen energy spectrum as measured by the Ulysses EPAC and the COSPIN/LET on board Ulysses. We found that the peak energy decreased from ∼5 MeV nucl−1, when Ulysses was at high northern heliographic latitudes embedded in the fast solar wind to ∼3.5 MeV n−1, in the streamer belt. The shift towards lower energy might also be caused by changing modulation although Voyager measurements indicate no variation of the ACR Oxygen spectrum at ∼60 AU. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
We model interplanetary H Lyman-α (Lα) observations from Galileo UVS (Ultraviolet Spectrometer) and EUVS (Extreme Ultraviolet Spectrometer) (Hord et al., 1992) and the Ulysses interstellar neutral gas (GAS) instrument (Witte et al., 1992). EUVS measurements near solar maximum (max) in 1990–1992 have a peaked brightness maximum upwind due to a rather isotropic solar wind charge-exchange ionization pattern (A=0–0.25). GAS measurements from solar minimum (min) in 1997 have a plateau in the upwind direction that we model using Ulysses SWOOPS (solar wind plasma experiment) solar min data on solar wind density and velocity at different heliographic latitudes. The isotropic ionization pattern deduced from EUVS at solar max may be consistent with recent SWOOPS results (McComas et al., 2000b, c) that high speed solar wind is absent at high latitudes during solar max. Galileo and Ulysses Lα data favor higher H temperatures (15 000–18 000 K) than previous models. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Our knowledge of how galactic and anomalous cosmic rays are modulated in the inner heliosphere has been dramatically enlarged as a result of measurements from several missions launched in the past ten years. Among them, Ulysses explored the polar regions of the inner heliosphere during the last solar minimum period and is now revisiting southern polar latitudes under solar maximum conditions. This gives us for the first time the possibility to compare modulation of cosmic rays at high heliographic latitudes during such different time periods. We present data from different instruments on board the Ulysses spacecraft together with 1 AU measurements in the ecliptic. In this paper we focus on measurements that have direct implications for our understanding of modulation of cosmic rays in the inner heliosphere. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Until the ULYSSES spacecraft reached the polar regions of the solar wind, the only high-latitude measurements available were from indirect techniques. The most productive observations in regions of the solar wind between 5R and 200R have been the family of radio scattering techniques loosely referred to as Interplanetary Scintillation (IPS) (Coles, 1978). Useful observations can be obtained using a variety of radio sources, for example spacecraft beacons, planetary radar echoes and compact cosmic sources (quasars, active galactic nuclei, pulsars, galactic masers, etc.). However for measurement of the high-latitude solar wind cosmic sources provide the widest coverage and this review will be confined to such observations. IPS observations played a very important role in establishing that polar coronal holes (first observed in soft x-ray emission) were sources of fast solar wind streams which occasionally extend down to the equatorial region and are observed by spacecraft. Here I will review the IPS technique and show the variation of both the velocity and the turbulence level with latitude over the last solar cycle. I will also outline recent work and discuss comparisons that we hope to make between IPS and ULYSSES observations.  相似文献   

17.
McKibben  R.B.  Lopate  C.  Zhang  M. 《Space Science Reviews》2001,97(1-4):257-262
With Ulysses approaching the south solar polar latitudes during a period of high solar activity, it is for the first time possible to study the distribution of solar energetic particles (SEPs) in solar latitude as well as in radius and longitude. From July 1997 to August 2000, Ulysses moved from near the solar equator at ∼5 AU to ∼67° S latitude at ∼3 AU. Using observations of >∼30 MeV protons from Ulysses and IMP-8 at Earth we find good correlation between large SEP increases observed at IMP and Ulysses, almost regardless of the relative locations of the spacecraft. The observations show that within a few days after injection of SEPs, the flux in the inner heliosphere is often almost uniform, depending only weakly on the position of the observer. No clear effect of the increasing solar latitude of Ulysses is evident. Since the typical latitudinal extent of CMEs, which most likely accelerate the SEPs, is only ∼30°, this suggests that the enhanced cross-field propagation for cosmic rays and CIR-accelerated particles deduced from Ulysses’ high latitude studies near solar minimum is also true for SEPs near solar maximum. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
There are three major types of solar wind: The steady fast wind originating on open magnetic field lines in coronal holes, the unsteady slow wind coming probably from the temporarily open streamer belt and the transient wind in the form of large coronal mass ejections. The majority of the models is concerned with the fast wind, which is, at least during solar minimum, the normal mode of the wind and most easily modeled by multi-fluid equations involving waves. The in-situ constraints imposed on the models, mainly by the Helios (in ecliptic) and Ulysses (high-latitude) interplanetary measurements, are extensively discussed with respect to fluid and kinetic properties of the wind. The recent SOHO observations have brought a wealth of new information about the boundary conditions for the wind in the inner solar corona and about the plasma conditions prevailing in the transition region and chromospheric sources of the wind plasma. These results are presented, and then some key questions and scientific issues are identified. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
At solar maximum, the large-scale structure of the heliospheric magnetic field (HMF) reflects the complexity of the Sun's coronal magnetic fields. The corona is characterised by mostly closed magnetic structures and short-lived, small coronal holes. The axis of the Sun's dipole field is close to the solar equator; there are also important contributions from the higher order terms. This complex and variable coronal magnetic configuration leads to a much increased variability in the HMF on all time scales, at all latitudes. The transition from solar minimum to solar maximum conditions, as reflected in the HMF, is described, as observed by Ulysses during its passage to high southern heliolatitudes. The magnetic signatures associated with the interaction regions generated by short-lived fast solar wind streams are presented, together with the highly disordered period in mid-1999 when there was a considerable reorganisation in coronal structures. The magnetic sector structure at high heliolatitudes shows, from mid-1999, a recognisable two-sector structure, corresponding to a highly inclined Heliospheric Current Sheet. A preliminary investigation of the radial component of the magnetic field indicates that it remains, on average, constant as a function of heliolatitude. Intervals of highly Alfvénic fluctuations in the rarefaction regions trailing the interaction regions have been, even if intermittently, identified even close to solar maximum. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Corotating Interaction Regions (CIRs) form as a consequence of the compression of the solar wind at the interface between fast speed streams and slow streams. Dynamic interaction of solar wind streams is a general feature of the heliospheric medium; when the sources of the solar wind streams are relatively stable, the interaction regions form a pattern which corotates with the Sun. The regions of origin of the high speed solar wind streams have been clearly identified as the coronal holes with their open magnetic field structures. The origin of the slow speed solar wind is less clear; slow streams may well originate from a range of coronal configurations adjacent to, or above magnetically closed structures. This article addresses the coronal origin of the stable pattern of solar wind streams which leads to the formation of CIRs. In particular, coronal models based on photospheric measurements are reviewed; we also examine the observations of kinematic and compositional solar wind features at 1 AU, their appearance in the stream interfaces (SIs) of CIRs, and their relationship to the structure of the solar surface and the inner corona; finally we summarise the Helios observations in the inner heliosphere of CIRs and their precursors to give a link between the optical observations on their solar origin and the in-situ plasma observations at 1 AU after their formation. The most important question that remains to be answered concerning the solar origin of CIRs is related to the origin and morphology of the slow solar wind. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号