首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
为保证航天员在轨生活健康,避免密封舱内结露,对载人航天器密封舱内空气除湿进行了理论研究:针对载人航天器地面封舱前干空气置换,建立了相对湿度估算模型;对航天器在轨采用冷凝干燥装置主动除湿进行了研究,建立了密封舱内空气湿度平衡方程,推导出冷凝干燥风机风量估算模型。相对湿度估算模型及风机风量估算模型可为实际工程设计提供参考。  相似文献   

2.
文章提出一种载人航天器密封舱内噪声非线性回归通用分析方法,可基于地面噪声试验测得的数量较多的数据样本和在轨噪声测试获取的少量数据样本,建立密封舱内位置–在轨噪声的数学模型。经验证该模型能够较为准确地拟合密封舱内在轨噪声水平,从而为开展载人航天器的降噪设计、优化噪声仿真模型和验证降噪措施效果提供数据支持。  相似文献   

3.
载人航天器密封舱内火灾流场特性数值研究   总被引:2,自引:2,他引:0  
为获得微重力环境下载人航天器密封舱内火灾发生时的流场分布规律,建立简化的密封舱模型,利用FDS软件对不同火源位置、通风场景下的火灾进行了数值仿真,得到了烟气温度、浓度分布规律。仿真结果可为密封舱内火灾探测器的合理安装布局提供参考。  相似文献   

4.
一种载人航天器气压控制系统仿真模型   总被引:1,自引:0,他引:1  
为支持航天员在轨驻留,载人航天器须利用气压控制系统将密封舱内的氧分压和总压控制在指标范围内。为分析气压控制系统的工作性能,文章提出了一种气压控制系统仿真模型,利用关键参数和主要特性描述公式对气压控制系统的主要要素进行定义,形成了密封舱、航天员、供氧组件、供氮组件、舱体漏孔等的数学模型,并定义了要素之间的接口关系。将正常模式和舱体泄漏模式下的仿真模型计算结果与载人航天器相关地面试验数据进行对比,证明了仿真模型的正确性。最后,利用仿真模型分析了舱体容积和漏孔通径大小对密封舱氧分压和总压变化趋势的影响。  相似文献   

5.
地面重力环境中进行航天器密封舱内空气通风换热试验时,由于自然对流的存在导致换热量和温度分布与空间微重力环境中的情况存在偏差。文章针对航天器密封舱,建立了舱内空气对流换热的数值模型,利用数值模拟软件对有无重力时典型工况下的对流换热进行了数值模拟及模拟结果的对比分析。分析表明重力对壁面换热量的影响较大,而对空气温度及分布的影响较小;且重力的影响随空气与壁面温差的增大而增大,随通风流量的增大而减小,舱间通风也会减小重力的影响。因此在重力环境中进行试验时需要对壁面换热量进行修正。  相似文献   

6.
《航天器工程》2017,(1):50-57
载人航天器组合体通常由多个具备不同功能的密封舱通过在轨组装形成,并由其中的单个密封舱利用舱间换气对组合体空气环境进行集中控制。文章建立了一种载人航天器组合体氧分压控制仿真分析模型,对五舱载人航天器组合体组装建造过程中各密封舱氧分压和空气总压变化趋势进行了分析。结果表明,受舱间换气量、密封舱数量、航天员驻留位置变化等因素的影响,组合体氧分压和空气总压变化趋势与单个密封舱情况存在显著差异。随着密封舱数量的增加,离氧分压主控舱输运距离越远的密封舱,氧分压的波动范围越窄,且所能达到的氧分压上限也越低;同时,组合体空气总压的波动范围也越窄。随着舱间换气量的增大,各密封舱氧分压的差异逐渐缩小,组合体的空气总压波动范围增大。五舱组合体的氧分压和空气总压变化范围及波动周期,明显小于与它总容积相同的单个密封舱,这种差异随着舱间换气量的增大而减小。文章的研究结果有助于载人航天器组合体环境控制系统的设计和优化。  相似文献   

7.
引入空气龄指标作为载人航天器舱内空气质量新的评价标准。通过空气龄分布研究,能够找出舱内新鲜空气供给较差的位置。建立了载人航天器乘员舱仿真模型,利用FLUENT软件UDS方程求解了舱内空气龄分布。采用示踪气体下降法对仿真结果中空气龄数值较高的位置进行了空气龄试验,测试结果与仿真结果吻合良好。文章的研究结果有助于指导未来我国空间站乘员舱通风系统的设计。  相似文献   

8.
密封舱流动换热的地面降压模拟研究   总被引:1,自引:0,他引:1  
地面降压模拟技术是研究裁人航天器舱内流动换热的有效手段,该技术的关键在于选取一个合适的舱内压力,使得地面条件下自然对流的影响得以消除。对应着某一个舱内压力,自然对流对流动换热的影响刚好得以消除,该舱内压力可定义为临界压力。文章利用数值模拟软件I—DEAS,针对处在独立飞行状态下的某一载人航天器,选取不同的舱内压力,分别对空间条件和地面条件下密封舱内的流动换热进行稳态数值模拟,得到了舱内温度分布和对流换热系数。在不同舱内压力下,通过比较空间条件和地面条件的计算结果,分析地面条件下自然对流对流动换热的影响是否得以消除。根据分析结果,给出了该载人航天器在使用地面降压模拟技术中的临界压力。  相似文献   

9.
航天器密封舱流动和传热的数值研究   总被引:5,自引:1,他引:5  
钟奇  刘强 《宇航学报》2002,23(5):44-48
在有强迫流动的航天器密封舱内,与固壁存在热交换的三维气体流动使得舱内传热相当复杂。本文用数值分析模拟航天器在轨状态下的流动和传热。结果表明,辐射和流动在密封舱热分析中都不可忽略。对多种风速的计算结果表明,平均对流换热系数与风扇布局基本无关而仅与平均风速有关,最后由计算结果得出了平均对流换热系数和平均风速的经验关系式。  相似文献   

10.
供氧模式对载人航天器气压控制的影响分析   总被引:2,自引:0,他引:2  
载人航天器气压控制系统主要负责控制密封舱内氧分压和总压满足指标要求,承担长期载人任务的载人航天器通常配备电解制氧系统用于维持密封舱内氧分压水平。文章建立了一种载人航天器密封舱气压控制系统仿真分析模型,利用该模型分析对比了氧气瓶供氧和电解制氧供氧2种模式对应的密封舱氧分压和总压变化规律。结果表明,驻留24 h内,氧气瓶供氧模式对应的氧分压单调下降;电解制氧供氧模式对应的氧分压并非单调下降,而是取决于供氧速率与乘员代谢耗氧间的关系,且氧分压变化范围要远小于氧气瓶供氧模式。驻留60 d内,电解制氧供氧模式对应的氧分压在上下限间的变化周期以及总压的变化周期要明显长于氧气瓶供氧模式。为避免空气温度的影响,氧分压和总压的控制范围应比允许范围窄。  相似文献   

11.
靳健  杨雷 《宇航学报》2014,35(9):1095-1104
建立了一种多舱段载人航天器空气环境控制系统性能集成仿真分析模型,包括舱体模块、乘员模块、舱压控制模块、温湿度控制模块和CO2净化模块,并对两舱段载人航天器空气环境控制系统性能进行了计算分析。结果表明,舱间通风传热能力较差,造成组合体温湿度水平超出指标范围,而舱间通风传质能力较强,可实现氧分压水平和CO2分压水平的集中控制。提出了一种控制系统改进方案,在非主控舱段增设控温系统改善组合体空气温度水平,仿真结果表明,控制系统改进后组合体各空气环境参数均满足设计要求。该工作有助于加快载人航天器空气环境控制系统的设计和改进流程。  相似文献   

12.
载人航天器密封舱噪声控制与试验   总被引:4,自引:4,他引:0  
载人航天器密封舱为航天员工作和生活的场所,需对航天员工作区和睡眠区进行噪声控制。文章以某中期驻留载人航天器为例,对其密封舱内的主要噪声源进行识别,并从吸声、隔声、消声、减振4个方面针对主要噪声源进行噪声控制。根据航天器实际噪声源和控制措施,构建了噪声计算模型,通过仿真分析获取了舱体内声压级水平分布,并对舱内噪声分布进行实际测试。仿真结果和测试结果表明噪声控制方案满足指标要求,噪声源识别准确,控制措施有效。  相似文献   

13.
载人航天器密封舱内流动换热数值模拟研究   总被引:1,自引:0,他引:1  
航天器密封舱主要以通风换热的方式排出舱内人员及设备的散热,从而控制舱内的温度水平。计算机数值模拟是研究舱内通风换热问题的有效方法。文章利用数值模拟软件I-DEAS,针对设定载人航天器,对其在轨状态下密封舱内复杂的流动换热进行稳态数值模拟,研究系统能量的流动和分配,评价通风设计方案的合理性。  相似文献   

14.
文章探讨了可用于载人航天器的常压热试验环境模拟技术,包括空间站的在轨漏热分析、多层常压隔热性能试验以及大型常压热试验验证系统试验能力分析,在此基础上完成了空间站某密封舱段的大型常压热试验,并基于试验结果进行漏热对比分析,验证所用常压热试验环境模拟技术的效果能达到预期。  相似文献   

15.
射流送风是载人航天器密封舱内电子设备冷却的一种有效方式,具有简单可靠、系统质量轻、换热系数大等优点.文章对中国载人航天器密封舱内2台大功耗电子设备射流送风冷却特性进行了试验研究,分析了射流风量、送风孔数、表面状态对设备平衡温度的影响.利用不超过0.4m3/min的风量,可将热流密度为315.8W/m2的设备温度控制在5...  相似文献   

16.
载人航天器大气环境控制系统性能集成分析   总被引:6,自引:1,他引:5  
考虑到载人航天器大气环境控制系统设计参数和控制参数众多,文章建立了一种载人航天器大气环境控制系统性能集成仿真分析模型,包括舱体模块、航天员模块、舱压控制模块、温湿度控制模块和二氧化碳净化模块。利用该模型对载人航天器常规工作模式下大气环境控制系统性能进行了计算分析,得到了在不同热负荷水平下载人航天器密封舱空气各个参数随在轨时间的变化趋势,结果表明:氧分压控制、二氧化碳净化和人区温湿度控制之间存在着密切的相互影响关系,不可孤立地进行分析。此外,文章还分析确定了非常规工作模式下热负荷水平允许上限,为载人航天器工作模式的确定提供了依据。研究结果有助于载人航天器大气环境控制系统的设计和流程改进。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号