共查询到20条相似文献,搜索用时 15 毫秒
1.
The Radiation Belt Storm Probes (RBSP) Education and Public Outreach (E/PO) program serves as a pipeline of activities to inspire and educate a broad audience about Heliophysics and the Sun-Earth system, specifically the Van Allen Radiation Belts. The program is comprised of a variety of formal, informal and public outreach activities that all align with the NASA Education Portfolio Strategic Framework outcomes. These include lesson plans and curriculum for use in the classroom, teacher workshops, internship opportunities, activities that target underserved populations, collaboration with science centers and NASA visitors’ centers and partnerships with experts in the Heliophysics and education disciplines. This paper will detail the activities that make up the RBSP E/PO program, their intended audiences, and an explanation as to how they align with the NASA education outcomes. Additionally, discussions on why these activities are necessary as part of a NASA mission are included. Finally, examples of how the RBSP E/PO team has carried out some of these activities will be discussed throughout. 相似文献
2.
The space-based Solar and Heliospheric Observatory (SOHO) is a joint venture of ESA and NASA within the frame of the Solar Terrestrial Science Programme (STSP), the first Cornerstone of ESA's long-term programme Space Science — Horizon 2000. The principal scientific objectives of the SOHO mission are: a) a better understanding of the structure and dynamics of the solar interior using techniques of helioseismology, and b) a better insight into the physical processes that form and heat the Sun's corona, maintain it and give rise to its acceleration into the solar wind. To achieve these goals, SOHO carries a payload consisting of 12 sets of complementary instruments which are briefly described here. 相似文献
3.
SOHO: The Solar and Heliospheric Observatory 总被引:1,自引:0,他引:1
The Solar and Heliospheric Observatory (SOHO), together with the Cluster mission, constitutes ESA's Solar Terrestrial Science Programme (STSP), the first Cornerstone of the Agency's long-term programme Space Science — Horizon 2000. STSP, which is being developed in a strong collaborative effort with NASA, will allow comprehensive studies to be made of the both the Sun's interior and its outer atmosphere, the acceleration and propagation of the solar wind and its interaction with the Earth. This paper gives a brief overview of one part of STSP, the SOHO mission. 相似文献
4.
R. A. Mewaldt C. M. S. Cohen W. R. Cook A. C. Cummings A. J. Davis S. Geier B. Kecman J. Klemic A. W. Labrador R. A. Leske H. Miyasaka V. Nguyen R. C. Ogliore E. C. Stone R. G. Radocinski M. E. Wiedenbeck J. Hawk S. Shuman T. T. von Rosenvinge K. Wortman 《Space Science Reviews》2008,136(1-4):285-362
The Low-Energy Telescope (LET) is one of four sensors that make up the Solar Energetic Particle (SEP) instrument of the IMPACT investigation for NASA’s STEREO mission. The LET is designed to measure the elemental composition, energy spectra, angular distributions, and arrival times of H to Ni ions over the energy range from ~3 to ~30 MeV/nucleon. It will also identify the rare isotope 3He and trans-iron nuclei with 30≤Z≤83. The SEP measurements from the two STEREO spacecraft will be combined with data from ACE and other 1-AU spacecraft to provide multipoint investigations of the energetic particles that result from interplanetary shocks driven by coronal mass ejections (CMEs) and from solar flare events. The multipoint in situ observations of SEPs and solar-wind plasma will complement STEREO images of CMEs in order to investigate their role in space weather. Each LET instrument includes a sensor system made up of an array of 14 solid-state detectors composed of 54 segments that are individually analyzed by custom Pulse Height Analysis System Integrated Circuits (PHASICs). The signals from four PHASIC chips in each LET are used by a Minimal Instruction Set Computer (MISC) to provide onboard particle identification of a dozen species in ~12 energy intervals at event rates of ~1,000 events/sec. An additional control unit, called SEP Central, gathers data from the four SEP sensors, controls the SEP bias supply, and manages the interfaces to the sensors and the SEP interface to the Instrument Data Processing Unit (IDPU). This article outlines the scientific objectives that LET will address, describes the design and operation of LET and the SEP Central electronics, and discusses the data products that will result. 相似文献
5.
The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO Observatories 总被引:1,自引:0,他引:1
A. B. Galvin L. M. Kistler M. A. Popecki C. J. Farrugia K. D. C. Simunac L. Ellis E. Möbius M. A. Lee M. Boehm J. Carroll A. Crawshaw M. Conti P. Demaine S. Ellis J. A. Gaidos J. Googins M. Granoff A. Gustafson D. Heirtzler B. King U. Knauss J. Levasseur S. Longworth K. Singer S. Turco P. Vachon M. Vosbury M. Widholm L. M. Blush R. Karrer P. Bochsler H. Daoudi A. Etter J. Fischer J. Jost A. Opitz M. Sigrist P. Wurz B. Klecker M. Ertl E. Seidenschwang R. F. Wimmer-Schweingruber M. Koeten B. Thompson D. Steinfeld 《Space Science Reviews》2008,136(1-4):437-486
The Plasma and Suprathermal Ion Composition (PLASTIC) investigation provides the in situ solar wind and low energy heliospheric ion measurements for the NASA Solar Terrestrial Relations Observatory Mission, which consists of two spacecraft (STEREO-A, STEREO-B). PLASTIC-A and PLASTIC-B are identical. Each PLASTIC is a time-of-flight/energy mass spectrometer designed to determine the elemental composition, ionic charge states, and bulk flow parameters of major solar wind ions in the mass range from hydrogen to iron. PLASTIC has nearly complete angular coverage in the ecliptic plane and an energy range from ~0.3 to 80 keV/e, from which the distribution functions of suprathermal ions, including those ions created in pick-up and local shock acceleration processes, are also provided. 相似文献
6.
Stuart D. Jordan 《Space Science Reviews》1981,29(4):333-340
The Solar Optical Telescope (SOT), which NASA plans to operate on Spacelab, should provide resolution down to 0.1 arc sec, thus offering the capability for solving a number of fundamental problems in solar magnetism and in atmospheric heating and dynamics.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980. 相似文献
7.
J.-A. Sauvaud D. Larson C. Aoustin D. Curtis J.-L. Médale A. Fedorov J. Rouzaud J. Luhmann T. Moreau P. Schröder P. Louarn I. Dandouras E. Penou 《Space Science Reviews》2008,136(1-4):227-239
SWEA, the solar wind electron analyzers that are part of the IMPACT in situ investigation for the STEREO mission, are described. They are identical on each of the two spacecraft. Both are designed to provide detailed measurements of interplanetary electron distribution functions in the energy range 1~3000 eV and in a 120°×360° solid angle sector. This energy range covers the core or thermal solar wind plasma electrons, and the suprathermal halo electrons including the field-aligned heat flux or strahl used to diagnose the interplanetary magnetic field topology. The potential of each analyzer will be varied in order to maintain their energy resolution for spacecraft potentials comparable to the solar wind thermal electron energies. Calibrations have been performed that show the performance of the devices are in good agreement with calculations and will allow precise diagnostics of all of the interplanetary electron populations at the two STEREO spacecraft locations. 相似文献
8.
9.
K. Scherer H. Fichtner T. Borrmann J. Beer L. Desorgher E. Flükiger H.-J. Fahr S. E. S. Ferreira U. W. Langner M. S. Potgieter B. Heber J. Masarik N. Shaviv J. Veizer 《Space Science Reviews》2006,127(1-4):467-465
In recent years the variability of the cosmic ray flux has become one of the main issues interpreting cosmogenic elements
and especially their connection with climate. In this review, an interdisciplinary team of scientists brings together our
knowledge of the evolution and modulation of the cosmic ray flux from its origin in the Milky Way, during its propagation
through the heliosphere, up to its interaction with the Earth’s magnetosphere, resulting, finally, in the production of cosmogenic
isotopes in the Earth’ atmosphere. The interpretation of the cosmogenic isotopes and the cosmic ray – cloud connection are
also intensively discussed. Finally, we discuss some open questions. 相似文献
10.
D. McComas F. Allegrini F. Bagenal P. Casey P. Delamere D. Demkee G. Dunn H. Elliott J. Hanley K. Johnson J. Langle G. Miller S. Pope M. Reno B. Rodriguez N. Schwadron P. Valek S. Weidner 《Space Science Reviews》2008,140(1-4):261-313
The Solar Wind Around Pluto (SWAP) instrument on New Horizons will measure the interaction between the solar wind and ions created by atmospheric loss from Pluto. These measurements provide a characterization of the total loss rate and allow us to examine the complex plasma interactions at Pluto for the first time. Constrained to fit within minimal resources, SWAP is optimized to make plasma-ion measurements at all rotation angles as the New Horizons spacecraft scans to image Pluto and Charon during the flyby. To meet these unique requirements, we combined a cylindrically symmetric retarding potential analyzer with small deflectors, a top-hat analyzer, and a redundant/coincidence detection scheme. This configuration allows for highly sensitive measurements and a controllable energy passband at all scan angles of the spacecraft. 相似文献
11.
CREEPBEHAVIOUROFT300/5222(C/E)COMPOSITELAMINATEWITHCROSS-PLYKouChanghe,LuMeng,LinFeng(BeijingUniversityofAeronauticsandAstron... 相似文献
12.
The measured D/H ratios in interstellar environments and in the solar system are reviewed. The two extreme D/H ratios in solar system water - (720±120)×10−6 in clay minerals and (88±11)×10−6 in chondrules, both from LL3 chondritic meteorites - are interpreted as the result of a progressive isotopic exchange in the solar nebula between deuterium-rich interstellar water and protosolar H2. According to a turbulent model describing the evolution of the nebula (Drouart et al., 1999), water in the solar system cannot be a product of thermal (neutral) reactions occurring in the solar nebula. Taking 720×10−6 as a face value for the isotopic composition of the interstellar water that predates the formation of the solar nebula, numerical simulations show that the water D/H ratio decreases via an isotopic exchange with H2. During the course of this process, a D/H gradient was established in the nebula. This gradient was smoothed with time and the isotopic homogenization of the solar nebula was completed in 106 years, reaching a D/H ratio of 88×10−6. In this model, cometary water should have also suffered a partial isotopic re-equilibration with H2. The isotopic heterogeneity observed in chondrites result from the turbulent mixing of grains, condensed at different epochs and locations in the solar nebula. Recent isotopic determinations of water ice in cold interstellar clouds are in agreement with these chondritic data and their interpretation (Texeira et al., 1999). This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
13.
14.
Möbius E. Kistler L.M. Popecki M.A. Crocker K.N. Granoff M. Turco S. Anderson A. Demain P. Distelbrink J. Dors I. Dunphy P. Ellis S. Gaidos J. Googins J. Hayes R. Humphrey G. Kästle H. Lavasseur J. Lund E.J. Miller R. Sartori E. Shappirio M. Taylor S. Vachon P. Vosbury M. Ye V. Hovestadt D. Klecker B. Arbinger H. Künneth E. Pfeffermann E. Seidenschwang E. Gliem F. Reiche K.-U. Stöckner K. Wiewesiek W. Harasim A. Schimpfle J. Battell S. Cravens J. Murphy G. 《Space Science Reviews》1998,86(1-4):449-495
The Solar Energetic Particle Ionic Charge Analyzer (SEPICA) is the main instrument on the Advanced Composition Explorer (ACE)
to determine the ionic charge states of solar and interplanetary energetic particles in the energy range from ≈0.2 MeV nucl−1
to ≈5 MeV charge−1. The charge state of energetic ions contains key information to unravel source temperatures, acceleration,
fractionation and transport processes for these particle populations. SEPICA will have the ability to resolve individual charge
states and have a substantially larger geometric factor than its predecessor ULEZEQ on ISEE-1 and -3, on which SEPICA is based.
To achieve these two requirements at the same time, SEPICA is composed of one high-charge resolution sensor section and two
low- charge resolution, but large geometric factor sections. The charge resolution is achieved by the focusing of the incoming
ions, through a multi-slit mechanical collimator, deflection in an electrostatic analyzer with a voltage up to 30 kV, and
measurement of the impact position in the detector system. To determine the nuclear charge (element) and energy of the incoming
ions, the combination of thin-window flow-through proportional counters with isobutane as counter gas and ion-implanted solid
state detectors provide for 3 independent ΔE (energy loss) versus E (residual energy) telescopes. The multi-wire proportional
counter simultaneously determines the energy loss ΔE and the impact position of the ions. Suppression of background from penetrating
cosmic radiation is provided by an anti-coincidence system with a CsI scintillator and Si-photodiodes. The data are compressed
and formatted in a data processing unit (S3DPU) that also handles the commanding and various automatted functions of the instrument.
The S3DPU is shared with the Solar Wind Ion Charge Spectrometer (SWICS) and the Solar Wind Ion Mass Spectrometer (SWIMS) and
thus provides the same services for three of the ACE instruments. It has evolved out of a long family of data processing units
for particle spectrometers.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
15.
郭琦 《燃气涡轮试验与研究》2002,15(2)
罗·罗公司和斯奈克玛公司于 2 0 0 1年组成一个联合研究与发展公司 ,负责实施AMET计划。AMET的目标是研制推重比为 15的发动机 ,然后将其发展成推重比为 18的发动机 ,用它来取代EJ2 0 0和M88发动机。计划首台完整的验证机将于 2 0 11年运转。该发动机有可能作为未来进攻性空中系统 (FOAS)的动力装置 ,预计FOAS于 2 0 17年装备英国皇家空军。英法启动先进军用发动机技术(AMET)计划@郭琦 相似文献
16.
Space Science Reviews - 相似文献
17.
18.
A. Fedorov A. Opitz J.-A. Sauvaud J. G. Luhmann D. W. Curtis D. E. Larson 《Space Science Reviews》2011,161(1-4):49-62
The IMPACT SWEA instruments on board the twin STEREO spacecraft detect the solar wind electrons with energies between 1 and 2000 eV. The instruments provide 3-dimensional velocity distributions, pitch angle distributions and solar wind properties at two vantage points in the ecliptic at 1 AU. A few days after launch suppression of the low energy solar wind electrons was detected, which makes data analysis challenging and causes a significant loss of information below 50 eV. This paper describes the methods used to both understand the nature of the problem and to recover the most information about the low energy solar wind electrons from the measured datasets. These include numerical simulations, in-flight calibration results, and data reconstruction methods that allow the calculation of solar wind parameter proxies with minor limitations. 相似文献
19.
This paper shows (1) how measurement of the three Cartesian components of the electrical-field or magnetic-field suffices for multisource azimuth/elevation direction finding and polarization estimation, and (2) how the vector cross-product direction-of-arrival estimator is fully applicable even when the dipole triad is arbitrarily displaced from the loop triad 相似文献
20.
G. M. Mason A. Korth P. H. Walpole M. I. Desai T. T. Von Rosenvinge S. A. Shuman 《Space Science Reviews》2008,136(1-4):257-284
The Solar-Terrestrial Relations Observatory (STEREO) mission addresses critical problems of the physics of explosive disturbances in the solar corona, and their propagation and interactions in the interplanetary medium between the Sun and Earth. The In-Situ-Measurements of Particles and CME Transients (IMPACT) investigation observes the consequences of these disturbances and other transients at 1 AU. The generation of energetic particles is a fundamentally important feature of shock-associated Coronal Mass Ejections (CMEs) and other transients in the interplanetary medium. Multiple sensors within the IMPACT suite measure the particle population from energies just above the solar wind up to hundreds of MeV/nucleon. This paper describes a portion of the IMPACT Solar Energetic Particles (SEP) package, the Suprathermal Ion Telescope (SIT) which identifies the heavy ion composition from the suprathermal through the energetic particle range (~few 10 s of keV/nucleon to several MeV/nucleon). SIT will trace and identify processes that energize low energy ions, and characterize their transport in the interplanetary medium. SIT is a time-of-flight mass spectrometer with high sensitivity designed to derive detailed multi-species particle spectra with a cadence of 60 s, thereby enabling detailed studies of shock-accelerated and other energetic particle populations observed at 1 AU. 相似文献