首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 820 毫秒
1.
The Electric Antennas for the STEREO/WAVES Experiment   总被引:1,自引:0,他引:1  
The STEREO/WAVES experiment is designed to measure the electric component of radio emission from interplanetary radio bursts and in situ plasma waves and fluctuations in the solar wind. Interplanetary radio bursts are generated from electron beams at interplanetary shocks and solar flares and are observed from near the Sun to 1 AU, corresponding to frequencies of approximately 16 MHz to 10 kHz. In situ plasma waves occur in a range of wavelengths larger than the Debye length in the solar wind plasma λ D ≈10 m and appear Doppler-shifted into the frequency regime down to a fraction of a Hertz. These phenomena are measured by STEREO/WAVES with a set of three orthogonal electric monopole antennas. This paper describes the electrical and mechanical design of the antenna system and discusses efforts to model the antenna pattern and response and methods for in-flight calibration.  相似文献   

2.
The IMPACT (In situ Measurements of Particles And CME Transients) investigation on the STEREO mission was designed and developed to provide multipoint solar wind and suprathermal electron, interplanetary magnetic field, and solar energetic particle information required to unravel the nature of coronal mass ejections and their heliospheric consequences. IMPACT consists of seven individual sensors which are packaged into a boom suite, and a SEP suite. This review summarizes the science objectives of IMPACT, the instruments that comprise the IMPACT investigation, the accommodation of IMPACT on the STEREO twin spacecraft, and the overall data products that will flow from the IMPACT measurements. Accompanying papers in this volume of Space Science Reviews highlight the individual sensor technical details and capabilities, STEREO project plans for the use of IMPACT data, and modeling activities for IMPACT (and other STEREO) data interpretation.  相似文献   

3.
The STEREO Mission: An Introduction   总被引:4,自引:0,他引:4  
The twin STEREO spacecraft were launched on October 26, 2006, at 00:52 UT from Kennedy Space Center aboard a Delta 7925 launch vehicle. After a series of highly eccentric Earth orbits with apogees beyond the moon, each spacecraft used close flybys of the moon to escape into orbits about the Sun near 1 AU. Once in heliospheric orbit, one spacecraft trails Earth while the other leads. As viewed from the Sun, the two spacecraft separate at approximately 44 to 45 degrees per year. The purposes of the STEREO Mission are to understand the causes and mechanisms of coronal mass ejection (CME) initiation and to follow the propagation of CMEs through the inner heliosphere to Earth. Researchers will use STEREO measurements to study the mechanisms and sites of energetic particle acceleration and to develop three-dimensional (3-D) time-dependent models of the magnetic topology, temperature, density and velocity of the solar wind between the Sun and Earth. To accomplish these goals, each STEREO spacecraft is equipped with an almost identical set of optical, radio and in situ particles and fields instruments provided by U.S. and European investigators. The SECCHI suite of instruments includes two white light coronagraphs, an extreme ultraviolet imager and two heliospheric white light imagers which track CMEs out to 1 AU. The IMPACT suite of instruments measures in situ solar wind electrons, energetic electrons, protons and heavier ions. IMPACT also includes a magnetometer to measure the in situ magnetic field strength and direction. The PLASTIC instrument measures the composition of heavy ions in the ambient plasma as well as protons and alpha particles. The S/WAVES instrument uses radio waves to track the location of CME-driven shocks and the 3-D topology of open field lines along which flow particles produced by solar flares. Each of the four instrument packages produce a small real-time stream of selected data for purposes of predicting space weather events at Earth. NOAA forecasters at the Space Environment Center and others will use these data in their space weather forecasting and their resultant products will be widely used throughout the world. In addition to the four instrument teams, there is substantial participation by modeling and theory oriented teams. All STEREO data are freely available through individual Web sites at the four Principal Investigator institutions as well as at the STEREO Science Center located at NASA Goddard Space Flight Center.  相似文献   

4.
This paper introduces and describes the radio and plasma wave investigation on the STEREO Mission: STEREO/WAVES or S/WAVES. The S/WAVES instrument includes a suite of state-of-the-art experiments that provide comprehensive measurements of the three components of the fluctuating electric field from a fraction of a hertz up to 16 MHz, plus a single frequency channel near 30 MHz. The instrument has a direction finding or goniopolarimetry capability to perform 3D localization and tracking of radio emissions associated with streams of energetic electrons and shock waves associated with Coronal Mass Ejections (CMEs). The scientific objectives include: (i) remote observation and measurement of radio waves excited by energetic particles throughout the 3D heliosphere that are associated with the CMEs and with solar flare phenomena, and (ii) in-situ measurement of the properties of CMEs and interplanetary shocks, such as their electron density and temperature and the associated plasma waves near 1 Astronomical Unit (AU). Two companion papers provide details on specific aspects of the S/WAVES instrument, namely the electric antenna system (Bale et al., Space Sci. Rev., 2007) and the direction finding technique (Cecconi et al., Space Sci. Rev., 2007).  相似文献   

5.
The Solar Terrestrial Relations Observatory (STEREO) is primarily a solar and interplanetary research mission, with one of the natural applications being in the area of space weather. The obvious potential for space weather applications is so great that NOAA has worked to incorporate the real-time data into their forecast center as much as possible. A subset of the STEREO data will be continuously downlinked in a real-time broadcast mode, called the Space Weather Beacon. Within the research community there has been considerable interest in conducting space weather related research with STEREO. Some of this research is geared towards making an immediate impact while other work is still very much in the research domain. There are many areas where STEREO might contribute and we cannot predict where all the successes will come. Here we discuss how STEREO will contribute to space weather and many of the specific research projects proposed to address STEREO space weather issues. The data which will be telemetered down in the Space Weather Beacon is also summarized here. Some of the lessons learned from integrating other NASA missions into the forecast center are presented. We also discuss some specific uses of the STEREO data in the NOAA Space Environment Center.  相似文献   

6.
The Solar Terrestrial Relations Observatory (STEREO) is the third mission in NASA’s Solar Terrestrial Probes program. The mission is managed by the Goddard Space Flight Center (GSFC) and implemented by The Johns Hopkins University Applied Physics Laboratory (JHU/APL). This two-year mission provides a unique and revolutionary view of the Sun–Earth system. Consisting of two nearly identical observatories, one ahead of Earth in its orbit around the Sun and the other trailing behind the Earth, the spacecraft trace the flow of energy and matter from the Sun to Earth and reveal the three-dimensional structure of coronal mass ejections (CMEs) to help explain their genesis and propagation. From its unique side-viewing vantage point, STEREO also provides alerts for Earth-directed solar ejections. These alerts are broadcast at all times and received either by NASA’s Deep Space Network (DSN) or by various space-weather partners.  相似文献   

7.
Vitally important to the success of any mission is the ground support system used for commanding the spacecraft, receiving the telemetry, and processing the results. We describe the ground system used for the STEREO mission, consisting of the Mission Operations Center, the individual Payload Operations Centers for each instrument, and the STEREO Science Center, together with mission support from the Flight Dynamics Facility, Deep Space Mission System, and the Space Environment Center. The mission planning process is described, as is the data flow from spacecraft telemetry to processed science data to long-term archive. We describe the online resources that researchers will be able to use to access STEREO planning resources, science data, and analysis software. The STEREO Joint Observations Program system is described, with instructions on how observers can participate. Finally, we describe the near-real-time processing of the “space weather beacon” telemetry, which is a low telemetry rate quicklook product available close to 24 hours a day, with the intended use of space weather forecasting.  相似文献   

8.
The magnetometer on the STEREO mission is one of the sensors in the IMPACT instrument suite. A single, triaxial, wide-range, low-power and noise fluxgate magnetometer of traditional design—and reduced volume configuration—has been implemented in each spacecraft. The sensors are mounted on the IMPACT telescoping booms at a distance of ~3 m from the spacecraft body to reduce magnetic contamination. The electronics have been designed as an integral part of the IMPACT Data Processing Unit, sharing a common power converter and data/command interfaces. The instruments cover the range ±65,536 nT in two intervals controlled by the IDPU (±512 nT; ±65,536 nT). This very wide range allows operation of the instruments during all phases of the mission, including Earth flybys as well as during spacecraft test and integration in the geomagnetic field. The primary STEREO/IMPACT science objectives addressed by the magnetometer are the study of the interplanetary magnetic field (IMF), its response to solar activity, and its relationship to solar wind structure. The instruments were powered on and the booms deployed on November 1, 2006, seven days after the spacecraft were launched, and are operating nominally. A magnetic cleanliness program was implemented to minimize variable spacecraft fields and to ensure that the static spacecraft-generated magnetic field does not interfere with the measurements.  相似文献   

9.
The radio frequency (RF) susceptibility characteristics of two commercial Global Positioning System (GPS) receivers were evaluated. A first-order analysis was performed to predict the receiver susceptibility thresholds based on the receiver sensitivity and processing gain. The receiver susceptibility thresholds in the post-acquisition mode were then measured for various interference signal frequencies and modulations. Both receivers exhibited very low susceptibility thresholds to in-band continuous wave (CW) signals. In addition, both receivers could be over-driven with an out-of-band signal. In this state the receivers indicated acceptable figures of merit despite loss of satellite signal lock  相似文献   

10.
We summarize the theory and modeling efforts for the STEREO mission, which will be used to interpret the data of both the remote-sensing (SECCHI, SWAVES) and in-situ instruments (IMPACT, PLASTIC). The modeling includes the coronal plasma, in both open and closed magnetic structures, and the solar wind and its expansion outwards from the Sun, which defines the heliosphere. Particular emphasis is given to modeling of dynamic phenomena associated with the initiation and propagation of coronal mass ejections (CMEs). The modeling of the CME initiation includes magnetic shearing, kink instability, filament eruption, and magnetic reconnection in the flaring lower corona. The modeling of CME propagation entails interplanetary shocks, interplanetary particle beams, solar energetic particles (SEPs), geoeffective connections, and space weather. This review describes mostly existing models of groups that have committed their work to the STEREO mission, but is by no means exhaustive or comprehensive regarding alternative theoretical approaches.  相似文献   

11.
Type II, III, and continuum solar radio events, as well as intense terrestrial magnetospheric radio emissions, were observed at low frequencies (10 MHz to 30 kHz) by the IMP-6 satellite during the period of high solar activity in August 1972. This review covers briefly the unique direction finding capability of the experiment, as well as a detailed chronology of the low frequency radio events, and, where possible, their association with both groundbased radio observations and solar flares. The attempted observation of solar bursts in the presence of intense magnetospheric noise may, as illustrated, lead to erroneous results in the absence of directional information. The problem of assigning an electron density scale and its influence on determining burst trajectories is reviewed. However, for the disturbed conditions existing during the period in question, we feel that such trajectories cannot be determined accurately by this method. In conclusion, the capabilities, limitations, and observing programs of present and future satellite experiments are briefly discussed.  相似文献   

12.
飞机射频隐身表征参量及其影响因素分析   总被引:2,自引:0,他引:2  
杨红兵  周建江  汪飞  张贞凯  陈益邻 《航空学报》2010,31(10):2040-2045
 随着军事装备的不断发展,无源探测器(电子支援系统、雷达告警接收机和电子情报接收机)对飞机的探测能力大大提高。为了避免机载雷达设备辐射的射频(RF)信号被截获,要求飞机具有良好的射频隐身性能。综合考虑机载雷达探测距离和无源截获接收机截获距离之间的关系以及天线空域扫描方式发生捷变对飞机射频隐身性能的影响,指出了用施里海尔(Schleher)截获因子评价飞机射频隐身性能的不足,并提出用信号截获率来表征飞机射频隐身特性的方法。最后,对影响信号截获率的因素进行分析与计算,在此基础上给出飞机实现射频隐身的途径与方法。该评价方法综合了飞机在时域、频域和空域上的射频隐身特性,对飞机的射频隐身设计具有参考价值。  相似文献   

13.
Green  J.L.  Reinisch  B.W. 《Space Science Reviews》2003,109(1-4):183-210
The Radio Plasma Imager (RPI) on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft was designed as a long-range magnetospheric radio sounder, relaxation sounder, and a passive plasma wave instrument. The RPI is a highly flexible instrument that can be programmed to perform these types of measurements at times when IMAGE is located in key regions of the magnetosphere. RPI is the first radio sounder ever flown to large radial distances into the magnetosphere. The long-range sounder echoes from RPI allow remote sensing of a variety of plasmas structures and boundaries in the magnetosphere. A profile inversion technique for RPI echo traces has been developed and provides a method for determining the density distribution of the plasma from either direct or field-aligned echoes. This technique has enabled the determination of the evolving density structure of the polar cap and the plasmasphere under a variety of geomagnetic conditions. New results from RPI show that the plasmasphere refills in slightly greater than a day at L values of 2.8 and that ion heating is probably playing a major role in the overall density distribution along the field-line. In addition, RPI's plasma resonance observations at large radial distances over the polar cap provided in situ measurements of the plasma density with an accuracy of a few percent. For the first time in the magnetosphere, RPI has also observed the plasma D resonances. RPI's long antennas and its very low noise receivers provide excellent observations in the passive receive-only mode when the instrument measures the thermal plasma noise as well as natural emissions such as the continuum radiation and auroral kilometric radiation (AKR). Recent passive measurements from RPI have been compared extensively with images from the Extreme Ultraviolet (EUV) imager on IMAGE resulting in a number of new discoveries. For instance, these combined observations show that kilometric continuum can be generated at the plasmapause from sources in or very near the magnetic equator, within a bite-out region of the plasmasphere. The process by which plasmaspheric bite-out structures are produced is not completely understood at this time. Finally, RPI has been used to successfully test the feasibility of magnetospheric tomography. During perigee passages of the Wind spacecraft, RPI radio transmissions at one and two frequencies have been observed by the Waves instrument. The received electric field vector was observed to rotate with time due to the changing density of plasma, and thus Faraday rotation was measured. Many future multi-spacecraft missions propose to use Faraday rotation to obtain global density pictures of the magnetosphere.  相似文献   

14.
The Low-Energy Telescope (LET) is one of four sensors that make up the Solar Energetic Particle (SEP) instrument of the IMPACT investigation for NASA’s STEREO mission. The LET is designed to measure the elemental composition, energy spectra, angular distributions, and arrival times of H to Ni ions over the energy range from ~3 to ~30 MeV/nucleon. It will also identify the rare isotope 3He and trans-iron nuclei with 30≤Z≤83. The SEP measurements from the two STEREO spacecraft will be combined with data from ACE and other 1-AU spacecraft to provide multipoint investigations of the energetic particles that result from interplanetary shocks driven by coronal mass ejections (CMEs) and from solar flare events. The multipoint in situ observations of SEPs and solar-wind plasma will complement STEREO images of CMEs in order to investigate their role in space weather. Each LET instrument includes a sensor system made up of an array of 14 solid-state detectors composed of 54 segments that are individually analyzed by custom Pulse Height Analysis System Integrated Circuits (PHASICs). The signals from four PHASIC chips in each LET are used by a Minimal Instruction Set Computer (MISC) to provide onboard particle identification of a dozen species in ~12 energy intervals at event rates of ~1,000 events/sec. An additional control unit, called SEP Central, gathers data from the four SEP sensors, controls the SEP bias supply, and manages the interfaces to the sensors and the SEP interface to the Instrument Data Processing Unit (IDPU). This article outlines the scientific objectives that LET will address, describes the design and operation of LET and the SEP Central electronics, and discusses the data products that will result.  相似文献   

15.
The transformation to net-centric operations necessitates evaluation of existing avionics capabilities, identification of deficiencies of these avionics for net-centric operations, and evaluation of alternative avionics that can provide the needed capabilities. The Global Information Grid (GIG) enables net-centric operations. The purpose of the GIG is to provide end users real-time or near-real-time access to multiple information sources ranging from airborne/satellite/ground sensors (video imagery and processed visual information/data) to databases. The end users in an aircraft view and interact with this information through the human system interface (HSI) or "smart" displays. The information is transmitted across a Gigabit Ethernet on-board the aircraft that interfaces with multiple channels of a software programmable radio that acts as a hub in the GIG network, or on-board sensors and processors. This paper presents the mandated capabilities, and the processes involved in determination of upgrades needed to achieve net-centric operations.  相似文献   

16.
The STEREO mission’s Education and Outreach (E/PO) program began early enough its team benefited from many lessons learned as NASA’s E/PO profession matured. Originally made up of discrete programs, by launch the STEREO E/PO program had developed into a quality suite containing all the program elements now considered standard: education workshops, teacher/student guides, national and international collaboration, etc. The benefit of bringing so many unique programs together is the resulting diverse portfolio, with scientists, E/PO professionals, and their education partners all of whom can focus on excellent smaller programs. The drawback is a less cohesive program nearly impossible to evaluate in its entirety with the given funding. When individual components were evaluated, we found our programs mostly made positive impact. In this paper, we elaborate on the programs, hoping that others will effectively use or improve upon them. When possible, we indicate the programs’ effects on their target audiences.  相似文献   

17.
The Suprathermal Electron (STE) instrument, part of the IMPACT investigation on both spacecraft of NASA’s STEREO mission, is designed to measure electrons from ~2 to ~100 keV. This is the primary energy range for impulsive electron/3He-rich energetic particle events that are the most frequently occurring transient particle emissions from the Sun, for the electrons that generate solar type III radio emission, for the shock accelerated electrons that produce type II radio emission, and for the superhalo electrons (whose origin is unknown) that are present in the interplanetary medium even during the quietest times. These electrons are ideal for tracing heliospheric magnetic field lines back to their source regions on the Sun and for determining field line lengths, thus probing the structure of interplanetary coronal mass ejections (ICMEs) and of the ambient inner heliosphere. STE utilizes arrays of small, passively cooled thin window silicon semiconductor detectors, coupled to state-of-the-art pulse-reset front-end electronics, to detect electrons down to ~2 keV with about 2 orders of magnitude increase in sensitivity over previous sensors at energies below ~20 keV. STE provides energy resolution of ΔE/E~10–25% and the angular resolution of ~20° over two oppositely directed ~80°×80° fields of view centered on the nominal Parker spiral field direction.  相似文献   

18.
The Juno Waves Investigation   总被引:1,自引:0,他引:1  
Jupiter is the source of the strongest planetary radio emissions in the solar system. Variations in these emissions are symptomatic of the dynamics of Jupiter’s magnetosphere and some have been directly associated with Jupiter’s auroras. The strongest radio emissions are associated with Io’s interaction with Jupiter’s magnetic field. In addition, plasma waves are thought to play important roles in the acceleration of energetic particles in the magnetosphere, some of which impact Jupiter’s upper atmosphere generating the auroras. Since the exploration of Jupiter’s polar magnetosphere is a major objective of the Juno mission, it is appropriate that a radio and plasma wave investigation is included in Juno’s payload. This paper describes the Waves instrument and the science it is to pursue as part of the Juno mission.  相似文献   

19.
This paper presents a review of the general properties of flare-generated collisionless interplanetary shock wave propagation, determined from multiple spacecraft plasma and magnetic field observations and by means of interplanetary scintillation of radio sources.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

20.
The High Energy Telescope for STEREO   总被引:1,自引:0,他引:1  
The IMPACT investigation for the STEREO Mission includes a complement of Solar Energetic Particle instruments on each of the two STEREO spacecraft. Of these instruments, the High Energy Telescopes (HETs) provide the highest energy measurements. This paper describes the HETs in detail, including the scientific objectives, the sensors, the overall mechanical and electrical design, and the on-board software. The HETs are designed to measure the abundances and energy spectra of electrons, protons, He, and heavier nuclei up to Fe in interplanetary space. For protons and He that stop in the HET, the kinetic energy range corresponds to ~13 to 40 MeV/n. Protons that do not stop in the telescope (referred to as penetrating protons) are measured up to ~100 MeV/n, as are penetrating He. For stopping He, the individual isotopes 3He and 4He can be distinguished. Stopping electrons are measured in the energy range ~0.7–6 MeV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号