共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Frey V. Angelopoulos M. Bester J. Bonnell T. Phan D. Rummel 《Space Science Reviews》2008,141(1-4):61-89
THEMIS, NASA’s fifth Medium Class Explorer (MIDEX) mission will monitor the onset and macro-scale evolution of magnetospheric substorms. It is a fleet of 5 small satellites (probes) measuring in situ the magnetospheric particles and fields while a network of 20 ground based observatories (GBOs) monitor auroral brightening over Northern America. Three inner probes (~1 day period, 10 RE apogee) monitor current disruption and two outer probes (~2 day and ~4 day period, 20 RE and 30 RE apogees respectively) monitor lobe flux dissipation. In order to time and localize substorm onsets, THEMIS utilizes Sun–Earth aligned conjunctions between the probes when the ground-based observatories are on the nightside. To maintain high recurrence of conjunctions the outer orbits have to be actively adjusted during each observation season. Orbit maintenance is required to rearrange the inner probes for dayside observations and also inject the probes into their science orbits after near-simultaneous release from a common launch vehicle. We present an overview of the orbit strategy, which is primarily driven by the scientific goals of the mission but also represents a compromise between the probe thermal constraints and fuel capabilities. We outline the process of orbit design, describe the mission profile and explain how mission requirements are targeted and evaluated. Mission-specific tools, based on high-fidelity orbit prediction and common magnetospheric models, are also presented. The planning results have been verified by in-flight data from launch through the end of the first primary science seasons and have been used for mission adjustments subject to the early scientific results from the coast phase and first tail season. 相似文献
2.
Christensen Philip R. Jakosky Bruce M. Kieffer Hugh H. Malin Michael C. McSween Harry Y. Nealson Kenneth Mehall Greg L. Silverman Steven H. Ferry Steven Caplinger Michael Ravine Michael 《Space Science Reviews》2004,110(1-2):85-130
The Thermal Emission Imaging System (THEMIS) on 2001 Mars Odyssey will investigate the surface mineralogy and physical properties of Mars using multi-spectral thermal-infrared images in nine wavelengths centered from 6.8 to 14.9 μm, and visible/near-infrared images in five bands centered from 0.42 to 0.86 μm. THEMIS will map the entire planet in both day and night multi-spectral infrared images at 100-m per pixel resolution, 60% of the planet in one-band visible images at 18-m per pixel, and several percent of the planet in 5-band visible color. Most geologic materials, including carbonates, silicates, sulfates, phosphates, and hydroxides have strong fundamental vibrational absorption bands in the thermal-infrared spectral region that provide diagnostic information on mineral composition. The ability to identify a wide range of minerals allows key aqueous minerals, such as carbonates and hydrothermal silica, to be placed into their proper geologic context. The specific objectives of this investigation are to: (1) determine the mineralogy and petrology of localized deposits associated with hydrothermal or sub-aqueous environments, and to identify future landing sites likely to represent these environments; (2) search for thermal anomalies associated with active sub-surface hydrothermal systems; (3) study small-scale geologic processes and landing site characteristics using morphologic and thermophysical properties; and (4) investigate polar cap processes at all seasons. THEMIS follows the Mars Global Surveyor Thermal Emission Spectrometer (TES) and Mars Orbiter Camera (MOC) experiments, providing substantially higher spatial resolution IR multi-spectral images to complement TES hyperspectral (143-band) global mapping, and regional visible imaging at scales intermediate between the Viking and MOC cameras. The THEMIS uses an uncooled microbolometer detector array for the IR focal plane. The optics consists of all-reflective, three-mirror anastigmat telescope with a 12-cm effective aperture and a speed of f/1.6. The IR and visible cameras share the optics and housing, but have independent power and data interfaces to the spacecraft. The IR focal plane has 320 cross-track pixels and 240 down-track pixels covered by 10 ~1-μm-bandwidth strip filters in nine different wavelengths. The visible camera has a 1024×1024 pixel array with 5 filters. The instrument weighs 11.2 kg, is 29 cm by 37 cm by 55 cm in size, and consumes an orbital average power of 14 W. 相似文献
3.
The Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission is the fifth NASA Medium-class Explorer (MIDEX), launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. The mission employs five identical micro-probes (termed “probes”), which have orbit periods of one, two and four days. Each of the Probes carries five instruments to measure electric and magnetic fields as well as ions and electrons. Each probe weighs 134 kg including 49 kg of hydrazine fuel and measures approximately 0.8×0.8×1.0 meters (L×W×H) and operates on an average power budget of 40 watts. For launch, the Probes were integrated to a Probe Carrier and separated via a launch vehicle provided pyrotechnic signal. Attitude data are obtained from a sun sensor, inertial reference unit and the instrument Fluxgate Magnetometer. Orbit and attitude control use a RCS system having two radial and two axial thrusters for roll and thrust maneuvers. Its two fuel tanks and pressurant system yield 960 meters/sec of delta-V, sufficient to allow Probe replacement strategies. Command and telemetry communications use an S-band 5 watt transponder through a cylindrical omni antenna with a toroidal gain pattern. This paper provides the key requirements of the probe, an overview of the probe design and how they were integrated and tested. It includes considerations and lessons learned from the experience of building NASA’s largest constellation. 相似文献
4.
C. M. Cully R. E. Ergun K. Stevens A. Nammari J. Westfall 《Space Science Reviews》2008,141(1-4):343-355
The Digital Fields Board (DFB) performs the data acquisition and signal processing for the Electric Fields Instrument and Search Coil Magnetometer on each of the THEMIS (Time History of Events and Macroscale Interactions during Substorms) satellites. The processing is highly flexible and low-power (~1.1 watt orbit-averaged). The primary data products are time series waveforms and wave power spectra of the electric and magnetic fields. The power spectra can be computed either on the raw signals (i.e. in a system co-rotating with the spacecraft) or in a coordinate system aligned with the local DC magnetic field. Other data products include spectral power from multiple passbands (filter banks) and electric power in the 30–500 kHz band. The DFBs on all five spacecraft have been turned on and checked out in-flight, and are functioning as designed. 相似文献
5.
The THEMIS Magnetic Cleanliness Program 总被引:1,自引:0,他引:1
M. Ludlam V. Angelopoulos E. Taylor R. C. Snare J. D. Means Y. S. Ge P. Narvaez H. U. Auster O. Le Contel D. Larson T. Moreau 《Space Science Reviews》2008,141(1-4):171-184
The five identical THEMIS Spacecraft, launched in February 2007, carry two magnetometers on each probe, one DC fluxgate (FGM) and one AC search coil (SCM). Due to the small size of the THEMIS probes, and the short length of the magnetometer booms, magnetic cleanliness was a particularly complex task for this medium sized mission. The requirements leveled on the spacecraft and instrument design required a detailed approach, but one that did not hamper the development of the probes during their short design, production and testing phase. In this paper we describe the magnetic cleanliness program’s requirements, design guidelines, program implementation, mission integration and test philosophy and present test results, and mission on-orbit performance. 相似文献
6.
M. Bester M. Lewis B. Roberts J. McDonald D. Pease J. Thorsness S. Frey D. Cosgrove D. Rummel 《Space Science Reviews》2008,141(1-4):91-115
THEMIS—a five-spacecraft constellation to study magnetospheric events leading to auroral outbursts—launched on February 17, 2007. All aspects of operations are conducted at the Mission Operations Center at the University of California at Berkeley. Activities of the multi-mission operations team include mission and science operations, flight dynamics and ground station operations. Communications with the constellation are primarily established via the Berkeley Ground Station, while NASA’s Ground Network provides secondary pass coverage. In addition, NASA’s Space Network supports maneuver operations near perigee. Following a successful launch campaign, the operations team performed on-orbit probe bus and instrument check-out and commissioning tasks, and placed the constellation initially into a coast phase orbit configuration to control orbit dispersion and conduct initial science operations during the summer of 2007. Mission orbit placement was completed in the fall of 2007, in time for the first winter observing season in the Earth’s magnetospheric tail. Over the course of the first 18 months of on-orbit constellation operations, procedures for instrument configuration, science data acquisition and navigation were refined, and software systems were enhanced. Overall, the implemented ground systems at the Mission Operations Center proved to be very successful and completely adequate to support reliable and efficient constellation operations. A high degree of systems automation is employed to support lights-out operations during off-hours. 相似文献
7.
The Search Coil Magnetometer for THEMIS 总被引:2,自引:0,他引:2
A. Roux O. Le Contel C. Coillot A. Bouabdellah B. de la Porte D. Alison S. Ruocco M. C. Vassal 《Space Science Reviews》2008,141(1-4):265-275
THEMIS instruments incorporate a tri-axial Search Coil Magnetometer (SCM) designed to measure the magnetic components of waves associated with substorm breakup and expansion. The three search coil antennas cover the same frequency bandwidth, from 0.1 Hz to 4 kHz, in the ULF/ELF frequency range. They extend, with appropriate Noise Equivalent Magnetic Induction (NEMI) and sufficient overlap, the measurements of the fluxgate magnetometers. The NEMI of the searchcoil antennas and associated pre-amplifiers is smaller than 0.76 pT $/\sqrt{\mathrm{Hz}}$ at 10 Hz. The analog signals produced by the searchcoils and associated preamplifiers are digitized and processed inside the Digital Field Box (DFB) and the Instrument Data Processing Unit (IDPU), together with data from the Electric Field Instrument (EFI). Searchcoil telemetry includes waveform transmission, FFT processed data, and data from a filter bank. The frequency range covered depends on the available telemetry. The searchcoils and their three axis structures have been precisely calibrated in a calibration facility, and the calibration of the transfer function is checked on board, usually once per orbit. The tri-axial searchcoils implemented on the five THEMIS spacecraft are working nominally. 相似文献
8.
C. T. Russell P. J. Chi D. J. Dearborn Y. S. Ge B. Kuo-Tiong J. D. Means D. R. Pierce K. M. Rowe R. C. Snare 《Space Science Reviews》2008,141(1-4):389-412
The THEMIS mission includes a comprehensive ground-based measurement network that adds two additional dimensions to the information gained in the night magnetosphere by the five THEMIS spacecraft. This network provides necessary correlative data on the strength and extent of events, enables their onsets to be accurately timed, and provides an educational component in which students have an active participation in the program. This paper describes the magnetometers installed to obtain these ground-based North American magnetic measurements, including the magnetometers installed as part of the educational effort, and the support electronics provided by UCLA for the ground-based observatories. These magnetometers measure the Earth’s magnetic field with high resolution, and with precise timing provided by the Global Positioning System. They represent UCLA’s next generation of low-cost, ground-based magnetometers using an inexpensive personal computer for data collection, storage and distribution. These systems can be used in a stand-alone mode requiring only AC power. If there is Internet connectivity, they can be configured to provide near real-time data over the web. These data are provided at full resolution to the entire scientific community over the web with minimal delay. 相似文献
9.
The THEMIS ESA Plasma Instrument and In-flight Calibration 总被引:3,自引:0,他引:3
J. P. McFadden C. W. Carlson D. Larson M. Ludlam R. Abiad B. Elliott P. Turin M. Marckwordt V. Angelopoulos 《Space Science Reviews》2008,141(1-4):277-302
The THEMIS plasma instrument is designed to measure the ion and electron distribution functions over the energy range from a few eV up to 30 keV for electrons and 25 keV for ions. The instrument consists of a pair of “top hat” electrostatic analyzers with common 180°×6° fields-of-view that sweep out 4π steradians each 3 s spin period. Particles are detected by microchannel plate detectors and binned into six distributions whose energy, angle, and time resolution depend upon instrument mode. On-board moments are calculated, and processing includes corrections for spacecraft potential. This paper focuses on the ground and in-flight calibrations of the 10 sensors on five spacecraft. Cross-calibrations were facilitated by having all the plasma measurements available with the same resolution and format, along with spacecraft potential and magnetic field measurements in the same data set. Lessons learned from this effort should be useful for future multi-satellite missions. 相似文献
10.
The Electric Field Instrument (EFI) for THEMIS 总被引:2,自引:0,他引:2
J. W. Bonnell F. S. Mozer G. T. Delory A. J. Hull R. E. Ergun C. M. Cully V. Angelopoulos P. R. Harvey 《Space Science Reviews》2008,141(1-4):303-341
The design, performance, and on-orbit operation of the three-axis electric field instrument (EFI) for the NASA THEMIS mission is described. The 20 radial wire boom and 10 axial stacer boom antenna systems making up the EFI sensors on the five THEMIS spacecraft, along with their supporting electronics have been deployed and are operating successfully on-orbit without any mechanical or electrical failures since early 2007. The EFI provides for waveform and spectral three-axis measurements of the ambient electric field from DC up to 8 kHz, with a single, integral broadband channel extending up to 400 kHz. Individual sensor potentials are also measured, providing for on-board and ground-based estimation of spacecraft floating potential and high-resolution plasma density measurements. Individual antenna baselines are 50- and 40-m in the spin plane, and 6.9-m along the spin axis. The EFI has provided for critical observations supporting a clear and definitive understanding of the electrodynamics of both the boundaries of the terrestrial magnetosphere, as well as internal processes, such as relativistic particle acceleration and substorm dynamics. Such multi-point electric field observations are key for pushing forward the understanding of electrodynamics in space, in that without high-quality estimates of the electric field, the underlying electromagnetic processes involved in current sheets, reconnection, and wave-particle interactions may only be inferred, rather than measured, quantified, and used to discriminate between competing hypotheses regarding those processes. 相似文献
11.
E. Taylor P. Harvey M. Ludlam P. Berg R. Abiad D. Gordon 《Space Science Reviews》2008,141(1-4):153-169
The Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission is a NASA Medium-class Explorer (MIDEX) mission, launched on February 17, 2007. The mission employs five identical micro-satellites, or “probes,” which line-up along the Earth’s magnetotail every four days in conjunctions to determine the trigger and large-scale evolution of magnetic substorms. The probes are equipped with a comprehensive suite of instruments that measure and track the motion of thermal and super-thermal ions and electrons, and electric and magnetic fields, at key regions in the magnetosphere. Primary science objectives require high data rates at periods of scientific interest, large data volumes, and control of science data collection on suborbital time scales. A central Instrument Data Processing Unit (IDPU) is necessary to organize and prioritize the data from the large number of instruments into a 200 MB solid state memory. The large data volume produced by the instruments requires a flexible memory capable of both high resolution snapshots during conjunctions and coarser survey data collection throughout the orbit. Onboard triggering algorithms select and prioritize the snapshots based on data quality to optimize the science data that is returned to the ground. This paper presents a detailed discussion of the hardware and software design of the THEMIS IDPU, describing the heritage design that has been fundamental to the THEMIS mission success so far. 相似文献
12.
S. E. Harris S. B. Mende V. Angelopoulos W. Rachelson E. Donovan B. Jackel M. Greffen C. T. Russell D. R. Pierce D. J. Dearborn K. Rowe M. Connors 《Space Science Reviews》2008,141(1-4):213-233
The comprehensive THEMIS approach to solving the substorm problem calls for monitoring the nightside auroral oval with low-cost, robust white-light imagers and magnetometers that can deliver high time resolution data (0.33 and 2 Hz, respectively). A network of 20 Ground-Based Observatories (GBOs) are deployed across Canada and Alaska to support the collection of data from these instruments. Here we describe the system design of the observatory, with emphasis on how the design meets the environmental and data-collection requirements. We also review the design of the All Sky Imager (ASI), discuss how it was built to survive Arctic deployments, and summarize the optical characterizations performed to qualify the design to meet THEMIS mission requirements. 相似文献
13.
14.
The Juno Mission 总被引:1,自引:0,他引:1
S. J. Bolton J. Lunine D. Stevenson J. E. P. Connerney S. Levin T. C. Owen F. Bagenal D. Gautier A. P. Ingersoll G. S. Orton T. Guillot W. Hubbard J. Bloxham A. Coradini S. K. Stephens P. Mokashi R. Thorne R. Thorpe 《Space Science Reviews》2017,211(1-4):5-95
The selection of the Discovery Program InSight landing site took over four years from initial identification of possible areas that met engineering constraints, to downselection via targeted data from orbiters (especially Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE) images), to selection and certification via sophisticated entry, descent and landing (EDL) simulations. Constraints on elevation (\({\leq}{-}2.5\ \mbox{km}\) for sufficient atmosphere to slow the lander), latitude (initially 15°S–5°N and later 3°N–5°N for solar power and thermal management of the spacecraft), ellipse size (130 km by 27 km from ballistic entry and descent), and a load bearing surface without thick deposits of dust, severely limited acceptable areas to western Elysium Planitia. Within this area, 16 prospective ellipses were identified, which lie ~600 km north of the Mars Science Laboratory (MSL) rover. Mapping of terrains in rapidly acquired CTX images identified especially benign smooth terrain and led to the downselection to four northern ellipses. Acquisition of nearly continuous HiRISE, additional Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) images, along with radar data confirmed that ellipse E9 met all landing site constraints: with slopes <15° at 84 m and 2 m length scales for radar tracking and touchdown stability, low rock abundance (<10 %) to avoid impact and spacecraft tip over, instrument deployment constraints, which included identical slope and rock abundance constraints, a radar reflective and load bearing surface, and a fragmented regolith ~5 m thick for full penetration of the heat flow probe. Unlike other Mars landers, science objectives did not directly influence landing site selection. 相似文献
15.
The Japanese lunar orbiter Kaguya (SELENE) was successfully launched by an H2A rocket on September 14, 2007. On October 4, 2007, after passing through a phasing orbit 2.5 times around the Earth, Kaguya was inserted into a large elliptical orbit circling the Moon. After the apolune altitude was lowered, Kaguya reached its nominal 100 km circular polar observation orbit on October 19. During the process of realizing the nominal orbit, two subsatellites Okina (Rstar) and Ouna (Vstar) were released into elliptical orbits with 2400 km and 800 km apolune, respectively; both elliptical orbits had 100 km perilunes. After the functionality of bus system was verified, four radar antennas and a magnetometer boom were extended, and a plasma imager was deployed. Acquisition of scientific data was carried out for 10 months of nominal mission that began in mid-December 2007. During the 8-month extended mission, magnetic fields and gamma-rays from lower orbits were measured; in addition to this, low-altitude observations were carried out using a Terrain Camera, a Multiband Imager, and an HDTV camera. New data pertaining to an intense magnetic anomaly and GRS data with higher spatial resolution were acquired to study magnetism and the elemental distribution of the Moon. After some orbital maneuvers were performed by using the saved fuel, the Kaguya spacecraft finally impacted on the southeast part of the Moon. The Kaguya team has archived the initial science data, and since November 2, 2009, the data has been made available to public, and can be accessed at the Kaguya homepage of JAXA. The team continues to also study and publish initial results in international journals. Science purposes of the mission and onboard instruments including initial science results are described in this overview. 相似文献
16.
The LISA Pathfinder Mission 总被引:1,自引:0,他引:1
LISA Pathfinder, formerly known as SMART-2, is the second of the European Space Agency’s Small Missions for Advance Research and Technology, and is designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission, by testing the core assumption of gravitational wave detection and general relativity: that free particles follow geodesics. The new technologies to be demonstrated in a space environment include: inertial sensors, high precision laser interferometry to free floating mirrors, and micro-Newton proportional thrusters. LISA Pathfinder will be launched on a dedicated launch vehicle in late 2011 into a low Earth orbit. By a transfer trajectory, the sciencecraft will enter its final orbit around the first Sun-Earth Lagrange point. First science results are expected approximately 3 months thereafter. Here, we give an overview of the mission including the technologies being demonstrated. 相似文献
17.
First Results of the THEMIS Search Coil Magnetometers 总被引:1,自引:0,他引:1
O. Le Contel A. Roux P. Robert C. Coillot A. Bouabdellah B. de la Porte D. Alison S. Ruocco V. Angelopoulos K. Bromund C. C. Chaston C. Cully H. U. Auster K. H. Glassmeier W. Baumjohann C. W. Carlson J. P. McFadden D. Larson 《Space Science Reviews》2008,141(1-4):509-534
We present the first data from the THEMIS Search Coil Magnetometers (SCM), taken between March and June 2007 while the THEMIS constellation apogee moved from the duskside toward the dawnside. Data reduction, especially the SCM calibration method and spurious noise reduction process, is described. The signatures of magnetic fluctuations in key magnetospheric regions such as the bow shock, the magnetopause and the magnetotail during a substorm, are described. We also discuss the role that magnetic fluctuations could play in plasma transport, acceleration and heating. 相似文献
18.
J. P. McFadden C. W. Carlson D. Larson J. Bonnell F. Mozer V. Angelopoulos K.-H. Glassmeier U. Auster 《Space Science Reviews》2008,141(1-4):477-508
Early observations by the THEMIS ESA plasma instrument have revealed new details of the dayside magnetosphere. As an introduction to THEMIS plasma data, this paper presents observations of plasmaspheric plumes, ionospheric ion outflows, field line resonances, structure at the low latitude boundary layer, flux transfer events at the magnetopause, and wave and particle interactions at the bow shock. These observations demonstrate the capabilities of the plasma sensors and the synergy of its measurements with the other THEMIS experiments. In addition, the paper includes discussions of various performance issues with the ESA instrument such as sources of sensor background, measurement limitations, and data formatting problems. These initial results demonstrate successful achievement of all measurement objectives for the plasma instrument. 相似文献
19.
L. A. Frank K. L. Ackerson J. A. Lee M. R. English G. L. Pickett 《Space Science Reviews》1992,60(1-4):283-304
The plasma instrumentation (PLS) for the Galileo Mission comprises a nested set of four spherical-plate electrostatic analyzers and three miniature, magnetic mass spectrometers. The three-dimensional velocity distributions of positive ions and electrons, separately, are determined for the energy-per-unit charge (E/Q) range of 0.9 V to 52 kV. A large fraction of the 4-steradian solid angle for charged particle velocity vectors is sampled by means of the fan-shaped field-of-view of 160°, multiple sensors, and the rotation of the spacecraft spinning section. The fields-of-view of the three mass spectrometers are respectively directed perpendicular and nearly parallel and anti-parallel to the spin axis of the spacecraft. These mass spectrometers are used to identify the composition of the positive ion plasmas, e.g., H+, O+, Na+, and S+, in the Jovian magnetosphere. The energy range of these three mass spectrometers is dependent upon the species. The maximum temporal resolutions of the instrument for determining the energy (E/Q) spectra of charged particles and mass (M/Q) composition of positive ion plasmas are 0.5 s. Three-dimensional velocity distributions of electrons and positive ions require a minimum sampling time of 20 s, which is slightly longer than the spacecraft rotation period. The two instrument microprocessors provide the capability of inflight implementation of operational modes by ground-command that are tailored for specific plasma regimes, e.g., magnetosheath, plasma sheet, cold and hot tori, and satellite wakes, and that can be improved upon as acquired knowledge increases during the tour of the Jovian magnetosphere. Because the instrument is specifically designed for measurements in the environs of Jupiter with the advantages of previous surveys with the Voyager spacecraft, first determinations of many plasma phenomena can be expected. These observational objectives include field-aligned currents, three-dimensional ion bulk flows, pickup ions from the Galilean satellites, the spatial distribution of plasmas throughout most of the magnetosphere and including the magnetotail, and ion and electron flows to and from the Jovian ionosphere. 相似文献
20.
We investigate links between the observational environment as experienced by the Hipparcos satellite and the performance of
the spacecraft and payload instrumentation, with particular emphasis on finding out whether some of these effects may have
been inadequately represented in instrument calibrations and could thus have affected the scientific results of the mission.
Scan-coverage and radiation effects are primarily random effects with only some long-term systematics. However, long- (days
to weeks) and short-term (hours) temperature variations reflected in the performance of some of the spacecraft instrumentation.
It is shown that only a small sign of some long-term thermal variations could be detected in the payload instrumentation.
These findings further limit the scope left for the occurrence of large-scale correlated errors in the Hipparcos astrometric
data. On the other hand, a number of great circles were identified which showed a highly significant drift of the basic angle,
which had not been detected in the preparation of the published data. The data from these circles may have, in some cases,
led to, very localised, slightly anomalous results, in particular where stars are accidentally affected by two or more of
such circles.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献