共查询到20条相似文献,搜索用时 46 毫秒
1.
G. M. Mason A. Korth P. H. Walpole M. I. Desai T. T. Von Rosenvinge S. A. Shuman 《Space Science Reviews》2008,136(1-4):257-284
The Solar-Terrestrial Relations Observatory (STEREO) mission addresses critical problems of the physics of explosive disturbances in the solar corona, and their propagation and interactions in the interplanetary medium between the Sun and Earth. The In-Situ-Measurements of Particles and CME Transients (IMPACT) investigation observes the consequences of these disturbances and other transients at 1 AU. The generation of energetic particles is a fundamentally important feature of shock-associated Coronal Mass Ejections (CMEs) and other transients in the interplanetary medium. Multiple sensors within the IMPACT suite measure the particle population from energies just above the solar wind up to hundreds of MeV/nucleon. This paper describes a portion of the IMPACT Solar Energetic Particles (SEP) package, the Suprathermal Ion Telescope (SIT) which identifies the heavy ion composition from the suprathermal through the energetic particle range (~few 10 s of keV/nucleon to several MeV/nucleon). SIT will trace and identify processes that energize low energy ions, and characterize their transport in the interplanetary medium. SIT is a time-of-flight mass spectrometer with high sensitivity designed to derive detailed multi-species particle spectra with a cadence of 60 s, thereby enabling detailed studies of shock-accelerated and other energetic particle populations observed at 1 AU. 相似文献
2.
H. Nilsson R. Lundin K. Lundin S. Barabash H. Borg O. Norberg A. Fedorov J.-A Sauvaud H. Koskinen E. Kallio P. Riihelä J. L. Burch 《Space Science Reviews》2007,128(1-4):671-695
The Ion Composition Analyzer (ICA) is part of the Rosetta Plasma Consortium (RPC). ICA is designed to measure the three-dimensional
distribution function of positive ions in order to study the interaction between the solar wind and cometary particles. The
instrument has a mass resolution high enough to resolve the major species such as protons, helium, oxygen, molecular ions,
and heavy ions characteristic of dusty plasma regions. ICA consists of an electrostatic acceptance angle filter, an electrostatic
energy filter, and a magnetic momentum filter. Particles are detected using large diameter (100 mm) microchannel plates and
a two-dimensional anode system. ICA has its own processor for data reduction/compression and formatting. The energy range
of the instrument is from 25 eV to 40 keV and an angular field-of-view of 360° × 90° is achieved through electrostatic deflection
of incoming particles. 相似文献
3.
J. H. Waite Jr. W. S. Lewis W. T. Kasprzak V. G. Anicich B. P. Block T. E. Cravens G. G. Fletcher W.-H. Ip J. G. Luhmann R. L. Mcnutt H. B. Niemann J. K. Parejko J. E. Richards R. L. Thorpe E. M. Walter R. V. Yelle 《Space Science Reviews》2004,114(1-4):113-231
The Cassini Ion and Neutral Mass Spectrometer (INMS) investigation will determine the mass composition and number densities of neutral species and low-energy ions in key regions of the Saturn system. The primary focus of the INMS investigation is on the composition and structure of Titan’s upper atmosphere and its interaction with Saturn’s magnetospheric plasma. Of particular interest is the high-altitude region, between 900 and 1000 km, where the methane and nitrogen photochemistry is initiated that leads to the creation of complex hydrocarbons and nitriles that may eventually precipitate onto the moon’s surface to form hydrocarbon–nitrile lakes or oceans. The investigation is also focused on the neutral and plasma environments of Saturn’s ring system and icy moons and on the identification of positive ions and neutral species in Saturn’s inner magnetosphere. Measurement of material sputtered from the satellites and the rings by magnetospheric charged particle and micrometeorite bombardment is expected to provide information about the formation of the giant neutral cloud of water molecules and water products that surrounds Saturn out to a distance of ∼12 planetary radii and about the genesis and evolution of the rings.The INMS instrument consists of a closed ion source and an open ion source, various focusing lenses, an electrostatic quadrupole switching lens, a radio frequency quadrupole mass analyzer, two secondary electron multiplier detectors, and the associated supporting electronics and power supply systems. The INMS will be operated in three different modes: a closed source neutral mode, for the measurement of non-reactive neutrals such as N2 and CH4; an open source neutral mode, for reactive neutrals such as atomic nitrogen; and an open source ion mode, for positive ions with energies less than 100 eV. Instrument sensitivity is greatest in the first mode, because the ram pressure of the inflowing gas can be used to enhance the density of the sampled non-reactive neutrals in the closed source antechamber. In this mode, neutral species with concentrations on the order of ≥104 cm−3 will be detected (compared with ≥105 cm−3 in the open source neutral mode). For ions the detection threshold is on the order of 10−2 cm−3 at Titan relative velocity (6 km sec−1). The INMS instrument has a mass range of 1–99 Daltons and a mass resolutionM/ΔM of 100 at 10% of the mass peak height, which will allow detection of heavier hydrocarbon species and of possible cyclic hydrocarbons such as C6H6.The INMS instrument was built by a team of engineers and scientists working at NASA’s Goddard Space Flight Center (Planetary Atmospheres Laboratory) and the University of Michigan (Space Physics Research Laboratory). INMS development and fabrication were directed by Dr. Hasso B. Niemann (Goddard Space Flight Center). The instrument is operated by a Science Team, which is also responsible for data analysis and distribution. The INMS Science Team is led by Dr. J. Hunter Waite, Jr. (University of Michigan).This revised version was published online in July 2005 with a corrected cover date. 相似文献
4.
5.
R. A. Mewaldt C. M. S. Cohen W. R. Cook A. C. Cummings A. J. Davis S. Geier B. Kecman J. Klemic A. W. Labrador R. A. Leske H. Miyasaka V. Nguyen R. C. Ogliore E. C. Stone R. G. Radocinski M. E. Wiedenbeck J. Hawk S. Shuman T. T. von Rosenvinge K. Wortman 《Space Science Reviews》2008,136(1-4):285-362
The Low-Energy Telescope (LET) is one of four sensors that make up the Solar Energetic Particle (SEP) instrument of the IMPACT investigation for NASA’s STEREO mission. The LET is designed to measure the elemental composition, energy spectra, angular distributions, and arrival times of H to Ni ions over the energy range from ~3 to ~30 MeV/nucleon. It will also identify the rare isotope 3He and trans-iron nuclei with 30≤Z≤83. The SEP measurements from the two STEREO spacecraft will be combined with data from ACE and other 1-AU spacecraft to provide multipoint investigations of the energetic particles that result from interplanetary shocks driven by coronal mass ejections (CMEs) and from solar flare events. The multipoint in situ observations of SEPs and solar-wind plasma will complement STEREO images of CMEs in order to investigate their role in space weather. Each LET instrument includes a sensor system made up of an array of 14 solid-state detectors composed of 54 segments that are individually analyzed by custom Pulse Height Analysis System Integrated Circuits (PHASICs). The signals from four PHASIC chips in each LET are used by a Minimal Instruction Set Computer (MISC) to provide onboard particle identification of a dozen species in ~12 energy intervals at event rates of ~1,000 events/sec. An additional control unit, called SEP Central, gathers data from the four SEP sensors, controls the SEP bias supply, and manages the interfaces to the sensors and the SEP interface to the Instrument Data Processing Unit (IDPU). This article outlines the scientific objectives that LET will address, describes the design and operation of LET and the SEP Central electronics, and discusses the data products that will result. 相似文献
6.
B. H. Mauk J. B. Blake D. N. Baker J. H. Clemmons G. D. Reeves H. E. Spence S. E. Jaskulek C. E. Schlemm L. E. Brown S. A. Cooper J. V. Craft J. F. Fennell R. S. Gurnee C. M. Hammock J. R. Hayes P. A. Hill G. C. Ho J. C. Hutcheson A. D. Jacques S. Kerem D. G. Mitchell K. S. Nelson N. P. Paschalidis E. Rossano M. R. Stokes J. H. Westlake 《Space Science Reviews》2016,199(1-4):471-514
7.
L. M. Peticolas N. Craig T. Kucera D. J. Michels J. Gerulskis R. J. MacDowall K. Beisser C. Chrissotimos J. G. Luhmann A. B. Galvin L. Ratta E. Drobnes B. J. Méndez S. Hill K. Marren R. Howard 《Space Science Reviews》2008,136(1-4):627-646
The STEREO mission’s Education and Outreach (E/PO) program began early enough its team benefited from many lessons learned as NASA’s E/PO profession matured. Originally made up of discrete programs, by launch the STEREO E/PO program had developed into a quality suite containing all the program elements now considered standard: education workshops, teacher/student guides, national and international collaboration, etc. The benefit of bringing so many unique programs together is the resulting diverse portfolio, with scientists, E/PO professionals, and their education partners all of whom can focus on excellent smaller programs. The drawback is a less cohesive program nearly impossible to evaluate in its entirety with the given funding. When individual components were evaluated, we found our programs mostly made positive impact. In this paper, we elaborate on the programs, hoping that others will effectively use or improve upon them. When possible, we indicate the programs’ effects on their target audiences. 相似文献
8.
Barraclough B.L. Dors E.E. Abeyta R.A. Alexander J.F. Ameduri F.P. Baldonado J.R. Bame S.J. Casey P.J. Dirks G. Everett D.T. Gosling J.T. Grace K.M. Guerrero D.R. Kolar J.D. Kroesche J.L. Lockhart W.L. McComas D.J. Mietz D.E. Roese J. Sanders J. Steinberg J.T. Tokar R.L. Urdiales C. Wiens R.C. 《Space Science Reviews》2003,105(3-4):627-660
The Genesis Ion Monitor (GIM) and the Genesis Electron Monitor (GEM) provide 3-dimensional plasma measurements of the solar
wind for the Genesis mission. These measurements are used onboard to determine the type of plasma that is flowing past the
spacecraft and to configure the solar wind sample collection subsystems in real-time. Both GIM and GEM employ spherical-section
electrostatic analyzers followed by channel electron multiplier (CEM) arrays for detection and angle and energy/charge analysis
of incident ions and electrons. GIM is of a new design specific to Genesis mission requirements whereas the GEM sensor is
an almost exact copy of the plasma electron sensors currently flying on the ACE and Ulysses spacecraft, albeit with new electronics
and programming. Ions are detected at forty log-spaced energy levels between ∼ 1 eV and 14 keV by eight CEM detectors, while
electrons with energies between ∼ 1 eV and 1.4 keV are measured at twenty log-spaced energy levels using seven CEMs. The spin
of the spacecraft is used to sweep the fan-shaped fields-of-view of both instruments across all areas of the sky of interest,
with ion measurements being taken forty times per spin and samples of the electron population being taken twenty four times
per spin. Complete ion and electron energy spectra are measured every ∼ 2.5 min (four spins of the spacecraft) with adequate
energy and angular resolution to determine fully 3-dimensional ion and electron distribution functions. The GIM and GEM plasma
measurements are principally used to enable the operational solar wind sample collection goals of the Genesis mission but
they also provide a potentially very useful data set for studies of solar wind phenomena, especially if combined with other
solar wind data sets from ACE, WIND, SOHO and Ulysses for multi-spacecraft investigations.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
9.
D. G. Mitchell L. J. Lanzerotti C. K. Kim M. Stokes G. Ho S. Cooper A. Ukhorskiy J. W. Manweiler S. Jaskulek D. K. Haggerty P. Brandt M. Sitnov K. Keika J. R. Hayes L. E. Brown R. S. Gurnee J. C. Hutcheson K. S. Nelson C. M. Hammock N. Paschalidis E. Rossano S. Kerem 《Space Science Reviews》2013,179(1-4):309-309
10.
T. E. Moore C. R. Chappell M. O. Chandler S. A. Fields C. J. Pollock D. L. Reasoner D. T. Young J. L. Burch N. Eaker J. H. Waite Jr. D. J. McComas J. E. Nordholdt M. F. Thomsen J. J. Berthelier R. Robson 《Space Science Reviews》1995,71(1-4):409-458
The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0–500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of 1 cm2 effective area each) and angular resolution (6°×18°) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.Deceased. 相似文献
11.
J. L. Burch R. Goldstein T. E. Cravens W. C. Gibson R. N. Lundin C. J. Pollock J. D. Winningham D. T. Young 《Space Science Reviews》2007,128(1-4):697-712
The ion and electron sensor (IES) is part of the Rosetta Plasma Consortium (RPC). The IES consists of two electrostatic plasma
analyzers, one each for ions and electrons, which share a common entrance aperture. Each analyzer covers an energy/charge
range from 1 eV/e to 22 keV/e with a resolution of 4%. Electrostatic deflection is used at the entrance aperture to achieve
a field of view of 90°× 360° (2.8π sr). Angular resolution is 5°× 22.5° for electrons and 5°× 45° for ions with the sector
containing the solar wind being further segmented to 5°× 5°. The three-dimensional plasma distributions obtained by IES will
be used to investigate the interaction of the solar wind with asteroids Steins and Lutetia and the coma and nucleus of comet
67P/Churyumov–Gerasimenko (CG). In addition, photoelectron spectra obtained at these bodies will help determine their composition. 相似文献
12.
D. A. Gurnett W. S. Kurth D. L. Kirchner G. B. Hospodarsky T. F. Averkamp P. Zarka A. Lecacheux R. Manning A. Roux P. Canu N. Cornilleau-Wehrlin P. Galopeau A. Meyer R. Boström G. Gustafsson J.-E. Wahlund L. Åhlen H. O. Rucker H. P. Ladreiter W. Macher L. J. C. Woolliscroft H. Alleyne M. L. Kaiser M. D. Desch W. M. Farrell C. C. Harvey P. Louarn P. J. Kellogg K. Goetz A. Pedersen 《Space Science Reviews》2004,114(1-4):395-463
The Cassini radio and plasma wave investigation is designed to study radio emissions, plasma waves, thermal plasma, and dust in the vicinity of Saturn. Three nearly orthogonal electric field antennas are used to detect electric fields over a frequency range from 1 Hz to 16 MHz, and three orthogonal search coil magnetic antennas are used to detect magnetic fields over a frequency range from 1 Hz to 12 kHz. A Langmuir probe is used to measure the electron density and temperature. Signals from the electric and magnetic antennas are processed by five receiver systems: a high frequency receiver that covers the frequency range from 3.5 kHz to 16 MHz, a medium frequency receiver that covers the frequency range from 24 Hz to 12 kHz, a low frequency receiver that covers the frequency range from 1 Hz to 26 Hz, a five-channel waveform receiver that covers the frequency range from 1 Hz to 2.5 kHz in two bands, 1 Hz to 26 Hz and 3 Hz to 2.5 kHz, and a wideband receiver that has two frequency bands, 60 Hz to 10.5 kHz and 800 Hz to 75 kHz. In addition, a sounder transmitter can be used to stimulate plasma resonances over a frequency range from 3.6 kHz to 115.2 kHz. Fluxes of micron-sized dust particles can be counted and approximate masses of the dust particles can be determined using the same techniques as Voyager. Compared to Voyagers 1 and 2, which are the only spacecraft that have made radio and plasma wave measurements in the vicinity of Saturn, the Cassini radio and plasma wave instrument has several new capabilities. These include (1) greatly improved sensitivity and dynamic range, (2) the ability to perform direction-finding measurements of remotely generated radio emissions and wave normal measurements of plasma waves, (3) both active and passive measurements of plasma resonances in order to give precise measurements of the local electron density, and (4) Langmuir probe measurements of the local electron density and temperature. With these new capabilities, it will be possible to perform a broad range of studies of radio emissions, wave-particle interactions, thermal plasmas and dust in the vicinity of Saturn.DeceasedThis revised version was published online in July 2005 with a corrected cover date. 相似文献
13.
von Steiger R. Zurbuchen T.H. Geiss J. Gloeckler G. Fisk L.A. Schwadron N.A. 《Space Science Reviews》2001,97(1-4):123-127
The source region of solar wind plasma is observed to be directly reflected in the compositional pattern of both elemental
and charge state compositions. Slow solar wind associated with streamers shows higher freeze-in temperatures and larger FIP
enhancements than coronal hole associated wind. Also, the variability of virtually all compositional parameters is much higher
for slow solar wind compared to coronal hole associated wind. We show that these compositional patterns persist even though
stream-stream interactions complicate the identification based on in situ plasma parameters.
This revised version was published online in August 2006 with corrections to the Cover Date. 相似文献
14.
钟厉%周上祺%韩西%任勤%云腾 《宇航材料工艺》2003,33(1):53-58
渗氮件的性能与渗氮层的化合物相组成和扩散层的微观结构密切相关。本文基于渗氮温度和氮势对渗氮层形成与分解的影响规律,借助X射线衍射分析和透射电子显微技术,对循环氮势快速离子氮化渗氮层相组成和微观组织形貌进行了深入研究,探讨了其快速渗氮的机理。结果表明,与常规离子渗氮工艺相比,通过周期地控制渗氮温度和氮势变化,快速离子渗氮不仅能显著地提高渗氮速度和增加材料的渗氮层深,而且使合金氮化物种类明显增多,扩散层中的沉淀硬化物也更细小弥散,有利于改善渗氮层质量和提高渗氮工件性能。 相似文献
15.
A global view of the ring current ions is presented using data acquired by the instrument MICS onboard the CRRES satellite during solar maximum. The variations of differential intensities, energy spectra, radial profile of the energetic particles and the origin of the magnetic local time (MLT) asymmetry of the ring current have been investigated in detail. O+ ions are an important contributor to the storm time ring current. Its abundance in terms of number density increases with increasing geomagnetic activity as well as its energy density. However, a saturation value for the energy density of O+ ions has been found. The low-energy H+ ions show a dramatic intensification and a rapid decay. However, its density ratio during the storm maximum is almost constant. On the other hand, high-energy H+ ions first exhibit a flux decrease followed by a delayed increase. Its density ratio shows an anti-correlation with the storm intensity. Both the positions of the maximum flux of O+ and He+ depend on storm activity: they move to lower altitudes in the early stage of a storm and move back to higher L-values during the recovery phase. Whereas the position of H+ and He++ show almost no dependence on the Dst index. The energy density distributions in radial distance and magnetic local time show drastic differences for different ion species. It demonstrates that the ring current asymmetry mainly comes from oxygen and helium ions, but not from protons. The outward motion of O+ around local noon may have some implications for oxygen bursts in the magnetosheath during IMF Bz negative conditions as observed by GEOTAIL. 相似文献
16.
J. B. Blake P. A. Carranza S. G. Claudepierre J. H. Clemmons W. R. Crain Jr. Y. Dotan J. F. Fennell F. H. Fuentes R. M. Galvan J. S. George M. G. Henderson M. Lalic A. Y. Lin M. D. Looper D. J. Mabry J. E. Mazur B. McCarthy C. Q. Nguyen T. P. O’Brien M. A. Perez M. T. Redding J. L. Roeder D. J. Salvaggio G. A. Sorensen H. E. Spence S. Yi M. P. Zakrzewski 《Space Science Reviews》2013,179(1-4):383-421
This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented. 相似文献
17.
18.
The Radiation Assessment Detector (RAD) Investigation 总被引:1,自引:0,他引:1
D. M. Hassler C. Zeitlin R. F. Wimmer-Schweingruber S. B?ttcher C. Martin J. Andrews E. B?hm D. E. Brinza M. A. Bullock S. Burmeister B. Ehresmann M. Epperly D. Grinspoon J. K?hler O. Kortmann K. Neal J. Peterson A. Posner S. Rafkin L. Seimetz K. D. Smith Y. Tyler G. Weigle G. Reitz F. A. Cucinotta 《Space Science Reviews》2012,170(1-4):503-558
The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) is an energetic particle detector designed to measure a broad spectrum of energetic particle radiation. It will make the first-ever direct radiation measurements on the surface of Mars, detecting galactic cosmic rays, solar energetic particles, secondary neutrons, and other secondary particles created both in the atmosphere and in the Martian regolith. The radiation environment on Mars, both past and present, may have implications for habitability and the ability to sustain life. Radiation exposure is also a major concern for future human missions. The RAD instrument combines charged- and neutral-particle detection capability over a wide dynamic range in a compact, low-mass, low-power instrument. These capabilities are required in order to measure all the important components of the radiation environment. RAD consists of the RAD Sensor Head (RSH) and the RAD Electronics Box (REB) integrated together in a small, compact volume. The RSH contains a solid-state detector telescope with three silicon PIN diodes for charged particle detection, a thallium doped Cesium Iodide scintillator, plastic scintillators for neutron detection and anti-coincidence shielding, and the front-end electronics. The REB contains three circuit boards, one with a novel mixed-signal ASIC for processing analog signals and an associated control FPGA, another with a second FPGA to communicate with the rover and perform onboard analysis of science data, and a third board with power supplies and power cycling or “sleep”-control electronics. The latter enables autonomous operation, independent of commands from the rover. RAD is a highly capable and highly configurable instrument that paves the way for future compact energetic particle detectors in space. 相似文献
19.
The Juno Radiation Monitoring (RM) Investigation 总被引:1,自引:0,他引:1
H. N. Becker J. W. Alexander A. Adriani A. Mura A. Cicchetti R. Noschese J. L. Jørgensen T. Denver J. Sushkova A. Jørgensen M. Benn J. E. P. Connerney S. J. Bolton The Selex Galileo Juno SRU Team J. Allison S. Watts V. Adumitroaie E. A. Manor-Chapman I. J. Daubar C. Lee S. Kang W. J. McAlpine T. Di Iorio C. Pasqui A. Barbis P. Lawton L. Spalsbury S. Loftin J. Sun 《Space Science Reviews》2017,213(1-4):507-545
The Radiation Monitoring Investigation of the Juno Mission will actively retrieve and analyze the noise signatures from penetrating radiation in the images of Juno’s star cameras and science instruments at Jupiter. The investigation’s objective is to profile Jupiter’s \(>10\mbox{-MeV}\) electron environment in regions of the Jovian magnetosphere which today are still largely unexplored. This paper discusses the primary instruments on Juno which contribute to the investigation’s data suite, the measurements of camera noise from penetrating particles, spectral sensitivities and measurement ranges of the instruments, calibrations performed prior to Juno’s first science orbit, and how the measurements may be used to infer the external relativistic electron environment. 相似文献
20.
Daly M. G. Barnouin O. S. Dickinson C. Seabrook J. Johnson C. L. Cunningham G. Haltigin T. Gaudreau D. Brunet C. Aslam I. Taylor A. Bierhaus E. B. Boynton W. Nolan M. Lauretta D. S. 《Space Science Reviews》2017,212(1-2):899-924
Space Science Reviews - The Canadian Space Agency (CSA) has contributed to the Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) spacecraft the... 相似文献