首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Near-term missions may be able to access samples of organic material from Mars, Europa, and Enceladus. The challenge for astrobiology will be to determine if this material is the remains of dead microorganisms or merely abiotic organic material. The remains of life that shares a common origin with life on Earth will be straightforward to detect using sophisticated methods such as DNA amplification. These methods are extremely sensitive but specific to Earth-like life. Detecting the remains of alien life—that does not have a genetic or biochemical commonality with Earth life—will be much more difficult. There is a general property of life that can be used to determine if organic material is of biological origin. This general property is the repeated use of a few specific organic molecules for the construction of biopolymers. For example, Earth-like life uses 20 amino acids to construct proteins, 5 nucleotide bases to construct DNA and RNA, and a few sugars to construct polysaccharides. This selectivity will result in a statistically anomalous distribution of organic molecules distinct from organic material of non-biological origin. Such a distinctive pattern, different from the pattern of Earth-like life, will be persuasive evidence for a second genesis of life.  相似文献   

2.
From a brief discussion of forms of meteorite carbon it is concluded that almost all the carbon in the carbonaceous chondrites is present as organic matter. Attempts to extract and identify this organic matter are then reviewed. It is shown that only 25 per cent has been extracted and only about 5 per cent chemically characterized. Of this 5 per cent most is a complex mixture of hydroxylated aromatic acids together with various hydrocarbons of the paraffin, naphthene and aromatic series. Small amounts of amino acids, sugars and fatty acids also are present. The possible chemical nature of the major fraction is discussed. It is suggested to be a mixture of high-molecular weight aromatic and hydrocarbon polymers.Possible sources of contamination of the meteorites are described and evidence indicating a general lack of organic contaminants is presented. It is concluded that most of the organic constituents are indigenous to the meteorites and are extra terrestial in origin. Synthetic processes for the compounds are mentioned and it is concluded that the organic material is probably of abiogenic origin.A brief review on studies of organized elements contained within the meteorites is presented. Difficulties of identification are discussed and photographs of some micro-structures of several carbonaceous chondrites are presented. No final conclusion about the nature of these objects is possible, but some appear to be various indigenous organic and mineral structures, while others are terrestrial contaminants.Contribution from the Chemistry Section, Space Science Division of Jet Propulsion Laboratory.  相似文献   

3.
A Sample Caching Subsystem (SCS) concept that provides transfer and storage of core and soil samples for planetary missions has been developed. The SCS could be carried on a rover and a rover arm-mounted coring tool could acquire samples and deposit the samples in the SCS. The SCS would transfer the samples into a sample container, with each sample in a separate sleeve. Important to the SCS design is the ability to seal each sleeve, and the sample with it, to isolate it from other samples and from the external environment. Sealing of the samples will allow for maintaining the integrity of organic materials over many years thereby allowing the samples to be analyzed in later missions or after a return trip to Earth.  相似文献   

4.
One of the fundamental challenges facing the scientific community as we enter this new century of Mars research is to understand, in a rigorous manner, the biotic potential both past and present of this outermost terrestrial-like planet in our solar system. Urey: Mars Organic and Oxidant Detector has been selected for the Pasteur payload of the European Space Agency’s (ESA’s) ExoMars rover mission and is considered a fundamental instrument to achieve the mission’s scientific objectives. The instrument is named Urey in recognition of Harold Clayton Urey’s seminal contributions to cosmochemistry, geochemistry, and the study of the origin of life. The overall goal of Urey is to search for organic compounds directly in the regolith of Mars and to assess their origin. Urey will perform a groundbreaking investigation of the Martian environment that will involve searching for organic compounds indicative of life and prebiotic chemistry at a sensitivity many orders of magnitude greater than Viking or other in situ organic detection systems. Urey will perform the first in situ search for key classes of organic molecules using state-of-the-art analytical methods that provide part-per-trillion sensitivity. It will ascertain whether any of these molecules are abiotic or biotic in origin and will evaluate the survival potential of organic compounds in the environment using state-of-the-art chemoresistor oxidant sensors.  相似文献   

5.
Until pristine samples can be returned from cometary nuclei, primitive meteorites represent our best source of information about organic chemistry in the early solar system. However, this material has been affected by secondary processing on asteroidal parent bodies which probably did not affect the material now present in cometary nuclei. Production of meteoritic organic matter apparently involved the following sequence of events: Molecule formation by a variety of reaction pathways in dense interstellar clouds; Condensation of those molecules onto refractory interstellar grains; Irradiation of organic-rich interstellar-grain mantles producing a range of molecular fragments and free radicals; Inclusion of those interstellar grains into the protosolar nebula with probable heating of at least some grain mantles during passage through the shock wave bounding the solar accretion disc; Agglomeration of residual interstellar grains and locally produced nebular condensates into asteroid-sized planetesimals; Heating of planetesimals by decay of extinct radionuclides; Melting of ice to produce liquid water within asteroidal bodies; Reaction of interstellar molecules, fragments and radicals with each other and with the aqueous environment, possibly catalysed by mineral grains; Loss of water and other volatiles to space yielding a partially hydrated lithology containing a complex suite of organic molecules; Heating of some of this organic matter to generate a kerogen-like complex; Mixing of heated and unheated material to yield the meteoritic material now observed. Properties of meteoritic organic matter believed to be consistent with this scenario include: Systematic decrease of abundance with increasing C number in homologous series of characterisable molecules; Complete structural diversity within homologous series; Predominance of branched-chain isomers; Considerable isotopic variability among characterisable molecules and within kerogen-like material; Substantial deuterium enrichment in all organic fractions; Some fractions significantly enriched in nitrogen-15; Modest excesses of L-enantiomers in some racemisation-resistant molecules but no general enantiomeric preference. Despite much speculation about the possible role of Fischer-Tropsch catalytic hydrogenation of CO in production of organic molecules in the solar nebula, no convincing evidence for such material has been found in meteorites. A similarity between some meteoritic organics and those produced by Miller-Urey discharge synthesis may reflect involvement of common intermediates rather than the operation of electric discharges in the early solar system. Meteoritic organic matter constitutes a useful, but not exact, guide to what we shall find with in situ analytical and sample-return missions to cometary nuclei. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
The outer solar system is an important area of investigation for exobiology, the study of life in the universe. Several moons of the outer planets involve processes and structures comparable to those thought to have played an important role in the emergence of life on Earth, such as the formation and exchange of organic materials between different reservoirs. The study of these prebiotic processes on, and in, outer solar system moons is a key goal for exobiology, together with the question of habitability and the search for evidence of past or even present life. This chapter reviews the aspects of prebiotic chemistry and potential presence of life on Europa, Enceladus and Titan, based on the most recent data obtained from space missions as well as theoretical and experimental laboratory models. The habitability of these extraterrestrial environments, which are likely to include large reservoirs of liquid water in their internal structure, is discussed as well as the particular case of Titan’s hydrocarbon lakes. The question of planetary protection, especially in the case of Europa, is also presented.  相似文献   

7.
High spectral resolution X-ray instruments on powerful X-ray satellites (e.g. Chandra, XMM-Newton) pointed through dust and gas at bright black holes and neutron stars can be used to study dust and intervening material in unique ways. With the new subfield of Condensed Matter Astrophysics as its goal, I will discuss current efforts to combine techniques and knowledge from condensed matter physics and astrophysics to determine the species-specific quantity and composition of interstellar gas and dust in the ISM and ionized environments. Prospects for improving on this work in future X-ray missions with higher throughput and spectral resolution are also presented in the context of spectral resolution goals for gratings and calorimeters.  相似文献   

8.
Largest satellite of Saturn and the only in the solar system having a dense atmosphere, Titan is one of the key planetary bodies for astrobiological studies, due to several aspects. (i) Its analogies with planet Earth, in spite of much lower temperatures, with, in particular, a methane cycle on Titan analogous to the water cycle on Earth. (ii) The presence of an active organic chemistry, involving several of the key compounds of prebiotic chemistry. The recent data obtained from the Huygens instruments show that the complex organic matter in Titan’s low atmosphere is mainly concentrated in the aerosol particles. The formation of biologically interesting compounds may also occur in the deep water ocean, from the hydrolysis of complex organic material included in the chrondritic matter accreted during the formation of Titan. (iii) The possible emergence and persistence of Life on Titan. All ingredients which seem necessary for Life to appear and even develop – liquid water, organic matter and energy – are present on Titan. Consequently, it cannot be excluded that life may have emerged on or in Titan. In spite of the extreme conditions in this environment life may have been able to adapt and to persist. Many data are still expected from the Cassini-Huygens mission and future astrobiological exploration mission of Titan are now under consideration. Nevertheless, Titan already looks like another world, with an active organic chemistry, in the absence of permanent liquid water, on the surface: a natural laboratory for prebiotic-like chemistry.  相似文献   

9.
NASA requires lightweight rechargeable batteries for future missions to Mars and the outer planets that are capable of operating over a wide range of temperatures, with high specific energy and energy densities. Due to the attractive performance characteristics, lithium-ion batteries have been identified as the battery chemistry of choice for a number of future applications, including Mars rovers and landers. The Mars 2001 Lander (Mars Surveyor Program MSP 01) will be one of the first missions which will utilize lithium-ion technology. This application will require two lithium-ion batteries, each being 28 V (eight cells), 25 Ah and 8 kg. In addition to the requirement of being able to supply at least 200 cycles and 90 days of operation on the surface of Mars, the battery must be capable of operation (both charge and discharge) at temperatures as low as -20°C. To assess the viability of lithium-ion cells for these applications, a number of performance characterization tests have been performed, including: assessing the room temperature cycle life, low temperature cycle life (-20°C), rate capability as a function of temperature, pulse capability, self-discharge and storage characteristics, as well as mission profile capability. This paper describes the Mars 2001 Lander mission battery requirements and contains results of the cell testing conducted to-date in support of the mission,  相似文献   

10.
In September 1995, NASA-Goddard held a workshop on low-cost access to space for science missions. The workshop provided briefings on balloons, sounding rockets, Shuttle payloads, and low-cost free-flyer concepts, to provide options of getting experiments into space. This report is the result of a panel session organized with the aim of generating new ideas beyond those presented in the workshop. In addition to the authors, Orlando Figueroa and Paul Ondrus of NASA-Goddard and Richard Zwirnbaum of Computer Sciences Corp. participated in the discussions. The ideas presented do not necessarily reflect the current thinking of NASA managers. Although the panel discussion was focused on the kinds of science missions usually funded by NASA, most of the ideas that were generated are relevant to military and commercial missions as well.  相似文献   

11.
Biosignatures in early terrestrial rocks are highly relevant in the search for traces of life on Mars because the early geological environments of the two planets were, in many respects, similar and, thus, the potential habitats for early life forms were similar. However, the identification and interpretation of biosignatures in ancient terrestrial rocks has proven contentious over the last few years. Recently, new investigations using very detailed field studies combined with highly sophisticated analytical techniques have begun to document a large range of biosignatures in Early Archaean rocks. Early life on Earth was diversified, widespread and relatively evolved, but its traces are generally, but not always, small and subtle. In this contribution I use a few examples of morphological biosignatures from the Early-Mid Archaean to demonstrate their variety in terms of size and type: macroscopic stromatolites from the 3.443 Ga Strelley Pool Chert, Pilbara; a meso-microscopic microbial mat from the 3.333 Ga Josefsdal Chert, Barberton; microscopic microbial colonies and a biofilm from the 3.446 Ga Kitty’s Gap Chert, Pilbara; and microscopic microbial corrosion pits in the glassy rinds of 3.22–3.48 Ga pillow lavas from Barberton. Some macroscopic and microscopic structures may be identifiable in an in situ robotic mission to Mars and in situ methods of organic molecule detection may be able to reveal organic traces of life. However, it is concluded that it will probably be necessary to return suitably chosen Martian rocks to Earth for the reliable identification of signs of life, since multiple observational and analytical methods will be necessary, especially if Martian life is significantly different from terrestrial life.  相似文献   

12.
马广富  龚有敏  郭延宁  高新洲 《航空学报》2020,41(7):23651-023651
随着火星探测技术的不断发展和探测任务的不断推进,载人火星探测在未来将会成为火星探测的重要手段。首先,回顾了无人火星探测任务的发展历程,对比分析了部分无人火星探测器进入、下降与着陆(EDL)过程的参数。然后,结合无人火星探测、载人月球探测和载人航天再入过程,梳理了载人火星探测的特点及需求,系统地总结了前苏联/俄罗斯和美国的载人火星探测研究进展以及技术储备。接着,归纳了载人火星探测的体系构成、集结方式和主要的技术挑战。最后,概括了载人火星EDL过程面临的难题,重点阐述了EDL的导航、制导与控制(GNC)关键技术。  相似文献   

13.
The Radiation Assessment Detector (RAD) Investigation   总被引:1,自引:0,他引:1  
The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) is an energetic particle detector designed to measure a broad spectrum of energetic particle radiation. It will make the first-ever direct radiation measurements on the surface of Mars, detecting galactic cosmic rays, solar energetic particles, secondary neutrons, and other secondary particles created both in the atmosphere and in the Martian regolith. The radiation environment on Mars, both past and present, may have implications for habitability and the ability to sustain life. Radiation exposure is also a major concern for future human missions. The RAD instrument combines charged- and neutral-particle detection capability over a wide dynamic range in a compact, low-mass, low-power instrument. These capabilities are required in order to measure all the important components of the radiation environment. RAD consists of the RAD Sensor Head (RSH) and the RAD Electronics Box (REB) integrated together in a small, compact volume. The RSH contains a solid-state detector telescope with three silicon PIN diodes for charged particle detection, a thallium doped Cesium Iodide scintillator, plastic scintillators for neutron detection and anti-coincidence shielding, and the front-end electronics. The REB contains three circuit boards, one with a novel mixed-signal ASIC for processing analog signals and an associated control FPGA, another with a second FPGA to communicate with the rover and perform onboard analysis of science data, and a third board with power supplies and power cycling or “sleep”-control electronics. The latter enables autonomous operation, independent of commands from the rover. RAD is a highly capable and highly configurable instrument that paves the way for future compact energetic particle detectors in space.  相似文献   

14.
The detection of organic molecules of unambiguous biological origin is fundamental for the confirmation of present or past life. Planetary exploration requires the development of miniaturized apparatus for in situ life detection. Analytical techniques based on mass spectrometry have been traditionally used in space science. Following the Viking landers, gas chromatography-mass spectrometry (GC-MS) for organic detection has gained general acceptance and has been used successfully in the Cassini–Huygens mission to Titan. Microfluidics allows the development of miniaturized capillary electrophoresis devices for the detection of important molecules for life, like amino acids or nucleobases. Recently, a new approach is gaining acceptance in the space science community: the application of the well-known, highly specific, antibody–antigen affinity interaction for the detection and identification of organics and biochemical compounds. Antibodies can specifically bind a plethora of structurally different compounds of a broad range of molecular sizes, from amino acids level to whole cells. Antibody microarray technology allows us to look for the presence of thousands of different compounds in a single assay and in just one square centimeter. Herein, we discuss several important issues—most of which are common with other instruments dealing with life signature detection in the solar system—that must be addressed in order to use antibody microarrays for life detection and planetary exploration. These issues include (1) preservation of biomarkers, (2) the extraction techniques for biomarkers, (3) terrestrial analogues, (4) the antibody stability under space environments, (5) the selection of unequivocal biomarkers for the antibody production, or (6) the instrument design and implementation.  相似文献   

15.
《中国航空学报》2021,34(2):229-239
This study aims to provide the pilot with optimal control time histories for stabilization of a helicopter after releasing the slung load in aerial delivery missions. A model with 21 degrees of freedom (21-DOF) has been developed and validated for a helicopter slung load system. The control history is generated with detailed procedure based on trajectory optimization. Effects of the objective function formulation on the results are discussed and rules are obtained to assist in the objective function determination. We conclude that the pilot should first decrease and then increase the collective control and adjust the longitudinal control to stabilize the helicopter after the in-hover slung load release. The obtained control history is reasonable and helpful for safety and efficiency improvement. Effects of path constraints and the Flight Control System (FCS) are studied. More stringent path constraints will lead to longer time spent and more controls. Stronger stiffness and weaker damping from the FCS will cause milder control histories but sharper on-axis state histories.  相似文献   

16.
An interview with Carl Pilcher, science program director for solar system exploration at NASA, examines NASA's past, present, and planned missions to explore the solar system. Specific questions relate to the status of current and planned missions, science results of the Pathfinder mission to Mars, cooperation with the Japanese space agency, the status of the search for extraterrestrial life in solar system meteoroids and asteroids, mission size for more in-depth exploration, reports of water on the moon, and the exploration of near-Earth objects.  相似文献   

17.
It is expected that the multimode weapons systems of the future will be highly fault tolerant, possessing the ability to perform tactical missions with both full or degraded functional capabilities. The fault-tolerant system characteristics will allow systems with less than the fully specified functional capabilities to be engaging in combat. This design feature will present the operators of these weapons system with the operational challenge of selecting and/or assigning weapons platforms with degraded capabilities to carry out tactical missions. An in-system assessment process is proposed to evaluate the operability for these weapons platforms on the basis of current functional status, the reliability of the hardware resources within the system's avionics, and the resources required by the various application modes to accomplish mission tasks  相似文献   

18.
The Earth is inhabited by life not just at its surface, but down to a depth of kms. Like surface life, this deep subsurface life produces a fossil record, traces of which may be found in the pore space of practically all rock types. The (palaeo)subsurface of other planetary bodies is therefore a promising target in the search for another example of life. Subsurface filamentous fabrics (SFFs), i.e. mineral encrustations of a filament-based textural framework, occur in many terrestrial rocks representing present or ancient subsurface settings. SFF are interpreted as mineral encrustations on masses of filaments/pseudofilaments of microbial origin. SFF are a common example of the fossil record of subsurface life. Macroscopic (pseudostalactites, U-shapes) and microscopic (filaments) characteristics make SFF’s a biosignature that can be identified with relative ease. SFF in the subsurface are probably about as common and easily recognizable as are stromatolites in surface environments. Close-up imagers (~50 micron/pixel resolution) and microscopes (~3 micron/pixel resolution) on upcoming Mars lander missions are crucial instruments that will allow the recognition of biofabrics of surface- and subsurface origin. The resolution available however will not allow the recognition of small (~1 micron) individual mineralized microbial cells. The microscopy of unprepared rock surfaces would benefit from the use of polarizing filters to reduce surface reflectance and enhance internally reflected light. Tests demonstrate the potential to visualize mineralized filaments using this procedure.  相似文献   

19.
教练机发动机加速任务试车谱的编制   总被引:2,自引:1,他引:1  
根据教练机发动机的飞行任务剖面,研究出2个航线类综合任务谱和2个机动飞行类综合任务谱。然后根据该发动机主要零部件的寿命分析结果,在等损伤的前提下对综合任务谱进行压缩处理,编制了其加速任务试车谱。   相似文献   

20.
Four decades ago, the firm detection of an Fe-K emission feature in the X-ray spectrum of the Perseus cluster revealed the presence of iron in its hot intracluster medium (ICM). With more advanced missions successfully launched over the last 20 years, this discovery has been extended to many other metals and to the hot atmospheres of many other galaxy clusters, groups, and giant elliptical galaxies, as evidence that the elemental bricks of life—synthesized by stars and supernovae—are also found at the largest scales of the Universe. Because the ICM, emitting in X-rays, is in collisional ionisation equilibrium, its elemental abundances can in principle be accurately measured. These abundance measurements, in turn, are valuable to constrain the physics and environmental conditions of the Type Ia and core-collapse supernovae that exploded and enriched the ICM over the entire cluster volume. On the other hand, the spatial distribution of metals across the ICM constitutes a remarkable signature of the chemical history and evolution of clusters, groups, and ellipticals. Here, we summarise the most significant achievements in measuring elemental abundances in the ICM, from the very first attempts up to the era of XMM-Newton, Chandra, and Suzaku and the unprecedented results obtained by Hitomi. We also discuss the current systematic limitations of these measurements and how the future missions XRISM and Athena will further improve our current knowledge of the ICM enrichment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号