首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Chandrayaan-1 is the first Indian planetary exploration mission that will perform remote sensing observation of the Moon to further our understanding about its origin and evolution. Hyper-spectral studies in the 0.4– region using three different imaging spectrometers, coupled with a low energy X-ray spectrometer, a sub-keV atom analyzer, a 3D terrain mapping camera and a laser ranging instrument will provide data on mineralogical and chemical composition and topography of the lunar surface at high spatial resolution. A low energy gamma ray spectrometer and a miniature imaging radar will investigate volatile transport on lunar surface and possible presence of water ice in the polar region. A radiation dose monitor will provide an estimation of energetic particle flux en route to the Moon as well as in lunar orbit. An impact probe carrying a mass spectrometer will also be a part of the spacecraft. The 1 ton class spacecraft will be launched by using a variant of flight proven indigenous Polar Satellite Launch Vehicle (PSLV-XL). The spacecraft will be finally placed in a 100 km circular polar orbit around the Moon with a planned mission life of two years.  相似文献   

2.
月球(火星)中子(水冰)探测仪初步方案研究   总被引:1,自引:0,他引:1  
中子(水冰)探测仪在月球、火星和太阳系其它天体的水冰存在和含量分布的探测中有重要应用。文章主要介绍了美国、俄罗斯等国在月球、火星水冰探测中的中子探测仪的使用情况和探测结果,以及搭载于奥德赛(Odyssey)火星探测器上的中子谱仪、高能中子探测仪和"月球勘测轨道器"(LRO)上的月球勘测中子探测仪、计划搭载于美国"火星科学实验室"(MSL)上的中子反射动能测量仪的主要原理。最后提出了我国的一种中子探测仪的初步方案设想。  相似文献   

3.
Duke MB 《Acta Astronautica》2002,50(6):379-383
The Clementine mission has revived interest in the possibility that ice exists in shadowed craters near the lunar poles. Theoretically, the problem is complex, with several possible sources of water (meteoroid, asteroid, comet impact), several possible loss mechanisms (impact vaporization, sputtering, photoionization), and burial by meteorite impact. Opinions of modelers have ranged from no ice to several times 10(16) g of ice in the cold traps. Clementine bistatic radar data have been interpreted in favor of the presence of ice, while Arecibo radar data do not confirm its presence. The Lunar Prospector mission, planned to be flown in the fall of 1997, could gather new evidence for the existence of ice. If ice is present, both scientific and utilitarian objectives would be addressed by a lunar polar rover, such as that proposed to the NASA Discovery program, but not selected. The lunar polar rover remains the best way to understand the distribution and characteristics of lunar polar ice.  相似文献   

4.
Lunar base development missions   总被引:1,自引:0,他引:1  
On 20 July 1969, humankind first set foot on our Moon. Since then we have developed the Space Shuttle, explored most of the planets, cooperated in the development of the International Space Station, and expanded our knowledge of the universe through use of systems such as the Hubble Space Telescope and the Mars Pathfinder. After just five human follow-on missions to our Moon, we have returned robotically only twice to orbit, to map the surface and explore for resources.

The indication of the presence of hydrogen concentration at the poles of our Moon found by Lunar Prospector has added a new perspective for groups studying and implementing future lunar missions. Plans for nearterm missions such as the European Space Agency (ESA) “Euromoon 2000”, the Japanese Lunar A and Selene, and the Mitsubishi ”Earthrise 2001” Project, along with follow-on phases to the Lunar Prospector, are the beginning of humankind's return to the Moon. Organizations such as the International Academy of Astronautics have long championed the “Case for an International Lunar Base,” and a vision of a commercially-based lunar program has been outlined by several groups. A Lunar Economic Development Authority (LEDA) promoted by the United Society in Space was promulgated by the filing of articles of incorporation in the state of Colorado on 4 August 1997. This non-profit corporation has as its goal the orderly development of the Moon, through issuance of bonds to international private citizens and business entities who care to invest in its long-term development.

This paper draws from the works of the aforementioned, and specifically from the International Academy of Astronautics Lunar Base Committee, to structure a series of architectures leading toward eventual international commercial colonization of the lunar surface. While the prospect of fully reusable transportation systems utilizing fully developed lunar resources to perpetuate the permanent lunar infrastructure is enticing, this is a goal. We must utilize our current and near-term capabilities to re-initiate human lunar presence, and then build on emerging technologies to strengthen our capabilities. Humankind's return to the Moon is a part of our destiny. We can return in the near future, and then proceed to a commercial, permanent settlement in the 21st century.  相似文献   


5.
The ability to locate and characterize icy deposits and other hydrogenous materials on the Moon and Mars will help us understand the distribution of water and, therefore, possible habitats at Mars, and may help us locate primitive prebiotic compounds at the Moon's poles. We have developed a rover-borne neutron probe that localizes a near-surface icy deposit and provides information about its burial depth and abundance. We have also developed a borehole neutron probe to determine the stratigraphy of hydrogenous subsurface layers while operating within a drill string segment. In our field tests, we have used a neutron source to "illuminate" surrounding materials and gauge the instruments' efficacy, and we can simulate accurately the observed instrument responses using a Monte Carlo nuclear transport code (MCNPX). An active neutron source would not be needed for lunar or martian near-surface exploration: cosmic-ray interactions provide sufficient neutron flux to depths of several meters and yield better depth and abundance sensitivity than an active source. However, for deep drilling (>or=10 m depth), a source is required. We also present initial tests of a borehole gamma ray lithodensity tool and demonstrate its utility in determining soil or rock densities and composition.  相似文献   

6.
月球表面以银河宇宙射线(GCR)为主引发的次生伽马谱和次生中子谱表征月壤的元素组成以及水冰含量,对于下一阶段的月球探测与资源原位利用是值得研究的重要内容。文章通过蒙特卡罗方法简单模拟与分析银河宇宙射线环境下月球表面簇射的伽马与中子辐射环境,结果表明:月球次生伽马谱具有明显的氢(2.23 MeV)、铝(0.83 MeV)、钙(3.53 MeV)、氧(6.13 MeV)、硅(1.77 MeV)谱线特征,水含量对其影响不大,但在高水含量时氢的谱线更为明显;月球表面次生中子谱形与月壤中水冰含量密切相关,随水冰含量增加热中子通量下降,0.01 eV中子的通量在20%含水量时比不含水时下降了72%。建议在后期月球探测计划中使用小型、低功耗的中子/伽马复合探测器,实现我国首次原位月球伽马/中子辐射环境探测,为未来进一步勘探月球原位水资源、矿产资源积累反演的基线数据。  相似文献   

7.
马如奇  裘桢炜  潘博  倪文成 《宇航学报》2022,43(10):1399-1409
基于月壤和水冰对不同谱段近红外激光存在吸收/反射差异性的特点,提出了采用多模近红外激光光强差异反演月壤含水特性的水冰原位快速预判方法。通过发射/接收光路同轴设计及多模激光光路分时复用设计,实现了多模激光光学系统轻小型化设计,研制出基于多模近红外激光的月壤水冰原位快速预判传感器工程样机,并开展了针对低含水率极区模拟月壤的含水特性原位预判试验。试验结果表明:该传感器水冰检测限可达0.39%,单次预判时间可优于1 s,光斑直径@检测距离为5 cm@500 mm,传感器具备对地面模拟月壤含水特性进行原位快速预判的能力。  相似文献   

8.
《Acta Astronautica》2001,48(5-12):711-721
Early human missions to the Moon have landed on six different sites on the lunar surface. These have all been in the low-latitude regions of the near side of the Moon. Early missions were designed primarily to assure crew safety rather than for scientific value. While the later missions added increasingly more challenging science, they remained restricted to near-side, low-latitude sites. Since the 1970s, we have learned considerably more about lunar planetology and resources. A return within the next five to ten years can greatly stimulate future human space exploration activities. We can learn much more about the distribution of lunar resources, especially about hydrogen, hydrated minerals, and water ice because they appear to be abundant near the lunar poles. The presence of hydrogen opens the possibility of industrial use of lunar resources to provide fuel for space transportation throughout the solar system.This paper discusses the rationale for near-term return of human crews to the Moon, and the advantages to be gained by selecting the Moon as the next target for human missions beyond low-Earth orbit. It describes a systems architecture for early missions, including transportation and habitation aspects. Specifically, we describe a primary transportation architecture that emphasizes existing Earth-to-orbit transportation systems, using expendable launch vehicles for cargo delivery and the Space Shuttle and its derivatives for human transportation. Transfer nodes should be located at the International Space Station (ISS) and at the Earth-Moon L1 (libration point).Each of the major systems is described, and the requisite technology readiness is assessed. These systems include Earth-to-orbit transportation, lunar transfer, lunar descent and landing, surface habitation and mobility, and return to Earth. With optimum reliance on currently existing space systems and a technology readiness assessment, we estimate the minimum development time required and perform order-of-magnitude cost estimates of a near-term human lunar mission.  相似文献   

9.
嫦娥一号卫星的初步科学成果与嫦娥二号卫星的使命   总被引:3,自引:0,他引:3  
嫦娥一号卫星于2007年10月24日在西昌卫星发射中心成功发射,2009年3月1日受控落月,在轨运行495d,一共取得了1.37Tbyte的原始科学探测数据,在此基础上生产出4Tbyte科学应用数据产品。通过对这些科学探测数据的初步分析和应用研究,已经获得了包括"我国首次月球探测工程全月球影像图"等在内的一系列科学成果,圆满实现了预期的各项科学目标,为推动我国月球与行星科学的研究和后续月球探测工程的开展奠定了重要基础。嫦娥二号卫星在嫦娥一号卫星取得圆满成功之后,进行了一系列技术改进,作为探月二期工程的先导星,将于今年年底前发射升空。嫦娥二号卫星从发射到第一次近月制动所经历的时间由13d缩短为5d,环月轨道高度由200km降低为100km,CCD相机的像元分辨率由120m提高到10m,激光高度计测量月面高程由1次/s提高到5次/s。嫦娥二号卫星将重点开展对月面着陆区地形地貌的精细探测,试验验证相关关键技术,为探月二期月面软着陆奠定科学和技术基础。  相似文献   

10.
月面热环境探测是我国探月工程中的一项必要工作,具有重要的工程意义和科学意义。文章主要探讨月球表面热环境的测量技术方案,为研制一种技术性能先进并可在我国探月工程中搭载的月面热环境测量仪器作好必要的技术准备。这是一种兼顾工程需要与科学性的用于热测量的有效载荷,可实地获取月表热环境特性参数,既可为后续的月面活动提供可靠的热控设计依据,又可为月球的相关科学研究提供必要的基础数据。  相似文献   

11.
Scientific investigations to be carried out at a lunar base can have significant impact on the location, extent, and complexity of lunar surface facilities. Among the potential research activities to be carried out are: (1) Lunar Science: Studies of the origin and history of the Moon and early solar system, based on lunar field investigations, operation of networks of seismic and other instruments, and collection and analysis of materials; (2) Space Plasma Physics: Studies of the time variation of the charged particles of the solar wind, solar flares and cosmic rays that impact the Moon as it moves in and out of the magnetotail of the Earth; (3) Astronomy: Utilizing the lunar environment and stability of the surface to emplace arrays of astronomical instruments across the electromagnetic spectrum to improve spectral and spatial resolution by several orders of magnitude beyond the Hubble Space Telescope and other space observatories; (4) Fundamental physics and chemistry: Research that takes advantage of the lunar environment, such as high vacuum, low magnetic field, and thermal properties to carry out new investigations in chemistry and physics. This includes material sciences and applications; (5) Life Sciences: Experiments, such as those that require extreme isolation, highly sterile conditions, or very low natural background of organic materials may be possible; and (6) Lunar environmental science: Because many of the experiments proposed for the lunar surface depend on the special environment of the Moon, it will be necessary to understand the mechanisms that are active and which determine the major aspects of that environment, particularly the maintenance of high-vacuum conditions. From a large range of experiments, investigations and facilities that have been suggested, three specific classes of investigations are described in greater detail to show how site selection and base complexity may be affected: (1) Extended geological investigation of a complex region up to 250 kilometers from the base requires long range mobility, with transportable life support systems and laboratory facilities for the analysis of rocks and soil. Selection of an optimum base site would depend heavily on an evaluation of the degree to which science objectives could be met. These objectives could include lunar cratering, volcanism, resource surveys or other investigations; (2) An astronomical observatory initially instrumented with a VLF radio telescope, but later expanding to include other instruments, requires site preparation capability, "line shack" life support systems, instrument maintenance and storage facilities, and sortie mode transportation. A site perpetually shielded from Earth is optimum for the advanced stages of a lunar observatory; (3) an experimental physics laboratory conducting studies requiring high vacuum facilities and heavily instrumented experiments, is not highly dependent on lunar location, but will require much more flexibility in experiment operation and EVA capability, and more sophisticated instrument maintenance and fabrication facilities.  相似文献   

12.
This paper presents an overview of the analysis performed on the lunar orbit and some of the possible contingencies for the European Student Moon Orbiter (ESMO). Originally scheduled for launch in 2014 –2015 as a piggyback payload, it was the only ESA planned mission to the Moon. By way of a weak stability boundary transfer, ESMO is inserted into an orbit around the Moon. Propellant use is at a premium, so the operational orbit is selected to be highly eccentric. In addition, an optimization is presented to achieve an orbit that is stable for 6 months without requiring orbit maintenance. A parameter study is undertaken to study the sensitivity of the lunar orbit insertion. A database of transfer solutions across 2014 and 2015 is used to study the relation between the robustness of weak capture and the planetary geometry at lunar arrival. A number of example recovery scenarios, where the orbit insertion maneuver partially or completely fails, are also considered.  相似文献   

13.
Luna-5 was the second Soviet spacecraft to reach the Moon. During the first decade of space exploration of the Moon, the Luna probe series was the main part of the Soviet scientific program. The tasks of the Luna-5 probe launched to the Moon in May 1965 were to land softly on the lunar surface, take photos, and study the surface. Before the Luna-5 landing, the prospective coordinates of the landing site were telegraphed to observatories so that they would observe the event. However, during its descent, the braking engine failed and the probe crash landed at 22 h 13 min on May 12, 1965. Later, new supposed coordinates of the impact were reported. All the experiments were undoubtedly lost; nevertheless, successive television images of the failed landing made at the Abastumani Astrophysical Observatory (AbAO) of the Georgian Academy of Sciences can be considered a specific scientific result of the mission. In the images, a changeable object was detected near the large Lansberg crater; for obscure secrecy reasons, almost nothing was reported to specialists about this object. It has been identified as a small, gradually spreading impact cloud. An analysis of the reprocessed images taken at the AbAO has revealed the exact coordinates of the Luna-5 impact for the first time to be 1.35° S, 25.48° W, which differ substantially the calculation data published earlier. Some properties of the regolith at the Luna-5 impact site are compared to the results of the Lunar Crater Observation and Sensing Satellite (LCROSS) related to the region near the south pole of the Moon and reported in 2010.  相似文献   

14.
It is over 30 years since the last human being stood on the lunar surface and this long hiatus in human exploration has been to the detriment of lunar and planetary science. The primary scientific importance of the Moon lies in the record it preserves of the early evolution of a terrestrial planet, and of the near-Earth cosmic environment in the first billion years or so of Solar System history. This record may not be preserved anywhere else; gaining proper access to it will require a human presence. Moreover, while this will primarily be a task for the geosciences, the astronomical and biological sciences would also benefit from a renewed human presence on the Moon, and especially from the establishment of a permanently occupied scientific outpost.  相似文献   

15.
月球返回再入着陆场不仅影响月-地返回转移和返回再入飞行,同时也影响整个月球飞行任务的规划和设计.文章首先分析了航天器与地-月间的相对位置关系;结合月-地返回转移及返回再入轨道特性,理清了月球、地球着陆场和航天器三者在惯性空间内相对位置的内在约束关系;最后分析并通过仿真研究,明确了制约航天器返回再入着陆场位置选择的限定因...  相似文献   

16.
月球表面热环境测量技术调研分析   总被引:1,自引:1,他引:0  
月面热环境探测是我国探月工程中的一项必要工作,具有重要的工程和科学意义。文章从工程角度确定了月面热环境测量的主要物理参数,分析了现阶段我国探月工程中实现月面热环境测量的技术条件和要求;对国内外有关材料热物性测量技术进行了综合调研,了解了国内外关于开展行星表面热环境探测的技术及应用现状;在结合我国航天测量技术的基础上对月面热环境测量所涉及的关键技术进行了分析,并初步勾勒出我国探月工程中月面热环境测量装置的指标、任务和实现方案。  相似文献   

17.
月亮女神探月计划及对我国月球与深空探测的思考   总被引:1,自引:1,他引:1  
日本月亮女神月球探测器在顺利完成各项探测任务后,于北京时间2009年6月11日受控落月.该探月计划在一箭三星组网探测月球背面重力场、有效载荷创新设计、科研活动组织、成果产出、公众参与和科普宣传等方面有许多亮点,对我国探月工程有重要参考价值.文章综合回顾、分析和评述了月亮女神探月计划的任务、探测器、轨道与飞控、重要事件等...  相似文献   

18.
The problem of the optimal spacecraft’s insertion from the Earth into the high circular polar Moon Artificial Satellite’s orbit (MAS) with a radius of 4000–8000 km has been investigated. A comparison of single- and three-impulse insertion schemes has been performed. The analysis was made taking into account the disturbances from the lunar gravity field harmonics and the gravity fields of the Earth and the Sun, as well as the engine’s limited thrust. It has been shown that the three-impulse transfer from the initial selenocentric hyperbola of the approach into the considered final high MAS orbit is noticeably better with respect to the final mass than the ordinary single-impulse deceleration. The control parameters that implement this maneuver and provide nearly the same energy expenses as in the Keplerian case have been presented. It was found that, in contrast to the Keplerian case, in the considered case of the real gravity field, there is the optimal maximum distance of the maneuver. Recently, the Moon exploration problem became actual again.  相似文献   

19.
嫦娥一号月球探测卫星技术特点分析   总被引:3,自引:2,他引:1  
嫦娥一号卫星是我国的第一个月球探测卫星,将飞行至距地球380000km的月球,实现环绕月球对其遥感探测。由于任务目标不同,嫦娥一号卫星将遇到比近地轨道卫星更复杂的空间环境和飞行控制过程,所以必须解决面临的所有新技术问题。文章介绍了嫦娥一号卫星在轨道设计、月食、热设计、制导导航、测控、数传等方面的技术特点及研制验证方法。  相似文献   

20.
Mendell WW 《Acta Astronautica》2005,57(2-8):676-683
The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity--governmental, international, or commercial--that can responsibly carry on lunar development past the exploration phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号