首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cavalazzi B 《Astrobiology》2007,7(2):402-415
The biologic origin of objects with microbe-like morphologies from the oldest preserved terrestrial sedimentary rocks remains a matter of controversy. Their biogenicity has been questioned, as well as the claim that they are convincing evidence of early life. Though minerals with microbe-like morphologies represent ambiguous evidence of life, they are, in a number of conditions, the only achievable information. In this study, the focused ion beam (FIB) electron microscopy technique was used for nano and micrometer-scale high-resolution imaging and in situ microsectioning of filamentous microfossils. The structural elements of these filaments, their spatial relationships with the host rock, and artifacts produced by alteration of the original morphology due to laboratory sample processing have been clearly defined. The in situ sectioning provided a means by which to investigate surface and subsurface microstructures and perform different analytical techniques on the same object, which minimizes sample destruction and avoids excessive manual handling and exposure of the specimen during analysis. Improvement in the morphological and compositional evaluation of the filaments has facilitated the development of a hypothesis regarding the metabolic pathway of the filamentous microfossils preserved in the Middle Devonian-aged Hollard Mound deposit, Anti-Atlas, Morocco. The results of this study demonstrate the potential of the FIB/SEM (scanning electron microscopy) system for detecting microbial-scale morphologies.  相似文献   

2.
Defining locations where conditions may have been favorable for life is a key objective for the exploration of Mars. Of prime importance are sites where conditions may have been favorable for the preservation of evidence of prebiotic or biotic processes. Areas displaying significant concentrations of the mineral hematite (alpha-Fe2O3), recently identified by thermal emission spectrometry, may have significance in the search for evidence of extraterrestrial life. Since iron oxides can form as aqueous mineral precipitates, the potential exists to preserve microscopic evidence of life in iron oxide-depositing ecosystems. Terrestrial hematite deposits proposed as possible analogs for hematite deposits on Mars include massive (banded) iron formations, iron oxide hydrothermal deposits, iron-rich laterites and ferricrete soils, and rock varnish. We report the potential for long-term preservation of microfossils by iron oxide mineralization in specimens of the approximately 2,100-Ma banded iron deposit of the Gunflint Formation, Canada. Scanning and analytical electron microscopy reveals micrometer-scale rods, spheres, and filaments consisting predominantly of iron and oxygen with minor carbon. We interpret these objects as microbial cells permineralized by an iron oxide, presumably hematite. The confirmation of ancient martian microbial life in hematite deposits will require the return of samples to terrestrial laboratories. A hematite-rich deposit composed of aqueous iron oxide precipitates may thus prove to be a prime site for future sample return.  相似文献   

3.
Laser-Raman imagery is a non-intrusive, non-destructive analytical technique, recently introduced to Precambrian paleobiology, that can be used to demonstrate a one-to-one spatial correlation between the optically discernible morphology and kerogenous composition of permineralized fossil microorganisms. Made possible by the submicron-scale resolution of the technique and its high sensitivity to the Raman signal of carbonaceous matter, such analyses can be used to determine the chemical-structural characteristics of organic-walled microfossils and associated sapropelic carbonaceous matter in acid-resistant residues and petrographic thin sections. Here we use this technique to analyze kerogenous microscopic fossils and associated carbonaceous sapropel permineralized in 22 unmetamorphosed or little-metamorphosed fine-grained chert units ranging from approximately 400 to approximately 2,100 Ma old. The lineshapes of the Raman spectra acquired vary systematically with five indices of organic geochemical maturation: (1) the mineral-based metamorphic grade of the fossil-bearing units; (2) the fidelity of preservation of the fossils studied; (3) the color of the organic matter analyzed; and both the (4) H/C and (5) N/C ratios measured in particulate kerogens isolated from bulk samples of the fossil-bearing cherts. Deconvolution of relevant spectra shows that those of relatively well-preserved permineralized kerogens analyzed in situ exhibit a distinctive set of Raman bands that are identifiable also in hydrated organic-walled microfossils and particulate carbonaceous matter freed from the cherts by acid maceration. These distinctive Raman bands, however, become indeterminate upon dehydration of such specimens. To compare quantitatively the variations observed among the spectra measured, we introduce the Raman Index of Preservation, an approximate measure of the geochemical maturity of the kerogens studied that is consistent both with the five indices of organic geochemical alteration and with spectra acquired from fossils experimentally heated under controlled laboratory conditions. The results reported provide new insight into the chemical-structural characteristics of ancient carbonaceous matter, the physicochemical changes that accompany organic geochemical maturation, and a new criterion to be added to the suite of evidence by which to evaluate the origin of minute fossil-like objects of possible but uncertain biogenicity.  相似文献   

4.
The chilled rinds of pillow basalt from the Ampère-Coral Patch Seamounts in the eastern North Atlantic were studied as a potential habitat of microbial life. A variety of putative biogenic structures, which include filamentous and spherical microfossil-like structures, were detected in K-phillipsite-filled amygdules within the chilled rinds. The filamentous structures (~2.5 μm in diameter) occur as K-phillipsite tubules surrounded by an Fe-oxyhydroxide (lepidocrocite) rich membranous structure, whereas the spherical structures (from 4 to 2 μm in diameter) are associated with Ti oxide (anatase) and carbonaceous matter. Several lines of evidence indicate that the microfossil-like structures in the pillow basalt are the fossilized remains of microorganisms. Possible biosignatures include the carbonaceous nature of the spherical structures, their size distributions and morphology, the presence and distribution of native fluorescence, mineralogical and chemical composition, and environmental context. When taken together, the suite of possible biosignatures supports the hypothesis that the fossil-like structures are of biological origin. The vesicular microhabitat of the rock matrix is likely to have hosted a cryptoendolithic microbial community. This study documents a variety of evidence for past microbial life in a hitherto poorly investigated and underestimated microenvironment, as represented by the amygdules in the chilled pillow basalt rinds. This kind of endolithic volcanic habitat would have been common on the early rocky planets in our Solar System, such as Earth and Mars. This study provides a framework for evaluating traces of past life in vesicular pillow basalts, regardless of whether they occur on early Earth or Mars.  相似文献   

5.
A NanoSIMS ion microprobe was used to map the submicron-scale distributions of carbon, nitrogen, sulfur, silicon, and oxygen in organic microfossils and laminae in a thin section of the approximately 0.85 billion year old Bitter Springs Formation of Australia. The data provide clues about the original chemistry of the microfossils, the silicification process, and the biosignatures of specific microorganisms and microbial communities. Chemical maps of fossil unicells and filaments revealed distinct wall- and sheath-like structures enriched in C, N, and S, consistent with their accepted biological origin. Surprisingly, organic laminae, previously considered to be amorphous, also exhibited filamentous and apparently compressed spheroidal structures defined by strong enrichments in C, N, and S. By analogy to NanoSIMS data from the well-preserved microfossils, these structures were interpreted as being of biological origin, most likely representing densely packed remnants of microbial mats. Given that the preponderance of organic matter in Precambrian sediments is similarly "amorphous," our findings indicate that a re-evaluation of ancient specimens via in situ structural, chemical, and isotopic study is warranted. Our analyses have led us to propose new criteria for assessing the biogenicity of problematic kerogenous materials, and, thus, these criteria can be applied to assessments of poorly preserved or fragmentary organic residues in early Archean sediments and any that might occur in meteorites or other extraterrestrial samples.  相似文献   

6.
Morphologically diverse structures that may constitute organic microfossils are reported from three remote and widely separated localities assigned to the ca. 3400?Ma Strelley Pool Formation in the Pilbara Craton, Western Australia. These localities include the Panorama, Warralong, and Goldsworthy greenstone belts. From the Panorama greenstone belt, large (> 40?μm) lenticular to spindle-like structures, spheroidal structures, and mat-forming thread-like structures are found. Similar assemblages of carbonaceous structures have been identified from the Warralong and Goldsworthy greenstone belts, though these assemblages lack the thread-like structures but contain film-like structures. All structures are syngenetic with their host sedimentary black chert, which is associated with stromatolites and evaporites. The host chert is considered to have been deposited in a shallow water environment. Rigorous assessment of biogenicity (considering composition, size range, abundance, taphonomic features, and spatial distributions) suggests that cluster-forming small (<15 μm) spheroids, lenticular to spindle-like structures, and film-like structures with small spheroids are probable microfossils. Thread-like structures are more likely fossilized fibrils of biofilm, rather than microfossils. The biogenicity of solitary large (>15?μm) spheroids and simple film-like structures is less certain. Although further investigations are required to confirm the biogenicity of carbonaceous structures from the Strelley Pool Formation, this study presents evidence for the existence of morphologically complex and large microfossils at 3400?Ma in the Pilbara Craton, which can be correlated to the contemporaneous, possible microfossils reported from South Africa. Although there is still much to be learned, they should provide us with new insights into the early evolution of life and shallow water ecosystems.  相似文献   

7.
Moreau JW  Sharp TG 《Astrobiology》2004,4(2):196-210
Microfossils preserved in chert from the;1.9 Ga Gunflint Formation (Schreiber Beach, Ontario, Canada) were studied with transmission electron microscopy (TEM) and analytical TEM (ATEM). Our goals were to uncover the style of silicification relative to the distribution of organic matter, and to evaluate the distribution and evolution of organic matter, at submicroscopic spatial scales. Petrographically the microfossils typically display filamentous or coccoidal morphologies, and consist of quartz crystals surrounded by kerogen along grain boundaries. ATEM analysis revealed that quartz associated with kerogen consists of 200-500nm-sized, round crystallites, whereas the chert matrix is comprised of randomly oriented, polygonal microquartz (5-10 microm). Silica spheroids found within some fossils consist of quartz subgrains in an amorphous to poorly crystalline matrix, suggesting that precipitation of opaline silica on organic matter occurred with subsequent but incomplete transformation to quartz. Some coccoidal microfossils surround large euhedral quartz crystals (up to 5 microm in diameter) that appeared to have influenced the distribution of kerogen during crystal growth. These euhedral quartz crystals commonly contain elongated (50-100 nm) iron-rich crystallites. Energy-loss, near-edge structure analysis of kerogen associated with a coccoidal microfossil showed that it is composed of amorphous carbon with no evidence of graphitization. TEM results revealed significant differences in the style of silicification between microbe-shaped microfossils and their surrounding chert matrix, as well as the presence of amorphous kerogen.  相似文献   

8.
Several locations have been identified on Mars that expose bulk, coarsely crystalline gray hematite. These deposits have been interpreted as being sedimentary and formed in aqueous environments. Lake Superior Type (LST) banded iron formation (BIF) was investigated as a spectral and possible process analog to these deposits. In northern Michigan, LST BIF formed in a sedimentary, continental shelf or shallow basin environment under stable tectonic conditions, and the oxide facies contains gray, crystalline hematite. These deposits are Proterozoic in age and contain microfossils associated with the early diversification of life on Earth. Samples of the hematite-bearing oxide facies, as well as the carbonate facies, were collected and analyzed for their spectral and geochemical characteristics. Sample spectra were measured in the visible, near-infrared, and thermal infrared for comparison with remote and in situ spectra obtained at Mars. Thin section analysis, as well as X-ray diffraction and scanning electron microscopy measurements, were performed to determine detailed geochemistry. There is no evidence for BIF at Opportunity's Meridiani landing site, and the results of this work will provide useful data for determining whether BIFs exist elsewhere on Mars and are, thus, relevant to current and future Mars exploration missions.  相似文献   

9.
The jets of icy particles and water vapor issuing from the south pole of Enceladus are evidence for activity driven by some geophysical energy source. The vapor has also been shown to contain simple organic compounds, and the south polar terrain is bathed in excess heat coming from below. The source of the ice and vapor, and the mechanisms that accelerate the material into space, remain obscure. However, it is possible that a liquid water environment exists beneath the south polar cap, which may be conducive to life. Several theories for the origin of life on Earth would apply to Enceladus. These are (1) origin in an organic-rich mixture, (2) origin in the redox gradient of a submarine vent, and (3) panspermia. There are three microbial ecosystems on Earth that do not rely on sunlight, oxygen, or organics produced at the surface and, thus, provide analogues for possible ecologies on Enceladus. Two of these ecosystems are found deep in volcanic rock, and the primary productivity is based on the consumption by methanogens of hydrogen produced by rock reactions with water. The third ecosystem is found deep below the surface in South Africa and is based on sulfur-reducing bacteria consuming hydrogen and sulfate, both of which are ultimately produced by radioactive decay. Methane has been detected in the plume of Enceladus and may be biological in origin. An indicator of biological origin may be the ratio of non-methane hydrocarbons to methane, which is very low (0.001) for biological sources but is higher (0.1-0.01) for nonbiological sources. Thus, Cassini's instruments may detect plausible evidence for life by analysis of hydrocarbons in the plume during close encounters.  相似文献   

10.
11.
The considerable evidence that Mars once had a wetter, more clement, environment motivates the search for past or present life on that planet. This evidence also suggests the possibility of restoring habitable conditions on Mars. While the total amounts of the key molecules--carbon dioxide, water, and nitrogen--needed for creating a biosphere on Mars are unknown, estimates suggest that there may be enough in the subsurface. Super greenhouse gases, in particular, perfluorocarbons, are currently the most effective and practical way to warm Mars and thicken its atmosphere so that liquid water is stable on the surface. This process could take approximately 100 years. If enough carbon dioxide is frozen in the South Polar Cap and absorbed in the regolith, the resulting thick and warm carbon dioxide atmosphere could support many types of microorganisms, plants, and invertebrates. If a planet-wide martian biosphere converted carbon dioxide into oxygen with an average efficiency equal to that for Earth's biosphere, it would take > 100,000 years to create Earth-like oxygen levels. Ethical issues associated with bringing life to Mars center on the possibility of indigenous martian life and the relative value of a planet with or without a global biosphere.  相似文献   

12.
Life and its former traces can only be detected from space when they are abundant and exposed to the planetary atmosphere at the moment of investigation by orbiters. Exposed rock surfaces present a multifractal labyrinth of niches for microbial life. Based upon our studies of highly stress-resistant microcolonial fungi of stone monument and desert rock surfaces, we propose that microbial biofilms that develop and become preserved on rock surfaces can be identified remotely by the following characteristics: (1) the existence of spectroscopically identifiable compounds that display unique adsorption, diffraction, and reflection patterns characteristic of biogenerated organic compounds (e.g., chlorophylls, carotenes, melanins, and possibly mycosporines), (2) demonstrably biogenic geomorphological features (e.g., biopitting, biochipping, and bioexfoliation), and (3) biominerals produced in association with biofilms that occupy rock surfaces (e.g., oxalates, forsterite, and special types of carbonates, sulfides, and silicates). Such traces or biosignatures of former life could provide macroscopically visible morphotypes and chemically identifiable products uniquely indicative of life.  相似文献   

13.
The context for the emergence of life on Earth sometime prior to 3.5 billion years ago is almost as big a puzzle as the definition of life itself. Hitherto, the problem has largely been addressed in terms of theoretical and experimental chemistry plus evidence from extremophile habitats like modern hydrothermal vents and meteorite impact structures. Here, we argue that extensive rafts of glassy, porous, and gas-rich pumice could have had a significant role in the origin of life and provided an important habitat for the earliest communities of microorganisms. This is because pumice has four remarkable properties. First, during eruption it develops the highest surface-area-to-volume ratio known for any rock type. Second, it is the only known rock type that floats as rafts at the air-water interface and then becomes beached in the tidal zone for long periods of time. Third, it is exposed to an unusually wide variety of conditions, including dehydration. Finally, from rafting to burial, it has a remarkable ability to adsorb metals, organics, and phosphates as well as to host organic catalysts such as zeolites and titanium oxides. These remarkable properties now deserve to be rigorously explored in the laboratory and the early rock record.  相似文献   

14.
Powell J  Maise G  Paniagua J 《Acta Astronautica》2001,48(5-12):737-765
A revolutionary new concept for the early establishment of robust, self-sustaining Martian colonies is described. The colonies would be located on the North Polar Cap of Mars and utilize readily available water ice and the CO2 Martian atmosphere as raw materials to produce all of the propellants, fuel, air, water, plastics, food, and other supplies needed by the colony. The colonists would live in thermally insulated large, comfortable habitats under the ice surface, fully shielded from cosmic rays. The habitats and supplies would be produced by a compact, lightweight (~4 metric tons) nuclear powered robotic unit termed ALPH (Atomic Liberation of Propellant and Habitat), which would land 2 years before the colonists arrived. Using a compact, lightweight 5 MW (th) nuclear reactor/steam turbine (1 MW(e)) power source and small process units (e.g., H2O electrolyzer, H2 and O2 liquefiers, methanator, plastic polymerizer, food producer, etc.) ALPH would stockpile many hundreds of tons of supplies in melt cavities under the ice, plus insulated habitats, to be in place and ready for use when the colonists landed. With the stockpiled supplies, the colonists would construct and operate rovers and flyers to explore the surface of Mars. ALPH greatly reduces the amount of Earth supplied material needed and enables large permanent colonies on Mars. It also greatly reduces human and mission risks and vastly increases the capability not only for exploration of the surrounding Martian surface, but also the ice cap itself. The North Polar Cap is at the center of the vast ancient ocean that covered much of the Martian Northern Hemisphere. Small, nuclear heated robotic probes would travel deep (1 km or more) inside the ice cap, collecting data on its internal structure, the composition and properties of the ancient Martian atmosphere, and possible evidence of ancient life forms (microfossils, traces of DNA, etc.) that were deposited either by wind or as remnants of the ancient ocean. Details of the ALPH system, which is based on existing technology, are presented. ALPH units could be developed and demonstrated on Earth ice sheets within a few years. An Earth-Mars space transport architecture is described, in which Mars produced propellant and supplies for return journeys to Earth would be lifted with relatively low DeltaV to Mars orbit, and from there transported back to Earth orbit, enabling faster and lower cost trips from Earth to Mars. The exploration capability and quality of life in a mature Martian colony of 500 persons located on the North Polar Cap is outlined.  相似文献   

15.
Walsh MM 《Astrobiology》2004,4(4):429-437
Sedimentary rocks have traditionally been the focus of the search for Archean microfossils; the Earth's oldest fossil bacteria are associated with carbonaceous matter in sedimentary cherts in greenstone belts in the eastern Pilbara block of Western Australia and Barberton greenstone belt of South Africa. Reports of possible fossils in a martian meteorite composed of igneous rock and the discovery of modern bacteria associated with basalts have stimulated a new look at Archean volcanic rocks as possible sites for fossil microbes. This study examines silicified volcaniclastic rocks, near-surface altered volcanic flow rocks, and associated stromatolite- like structures from the Archean Barberton greenstone belt to evaluate their potential for the preservation of carbonaceous fossils. Detrital carbonaceous particles are widely admixed with current-deposited debris. Carbonaceous matter is also present in altered volcanic flow rocks as sparse particles in silica veins that appear to be fed by overlying carbonaceous chert layers. Neither microfossils nor mat-like material was identified in the altered volcanic rocks or adjacent stromatolite-like structures. Ancient volcanic flow and volcaniclastic rocks are not promising sites for carbonaceous fossil preservation.  相似文献   

16.
A source of energy to power metabolism may be a limiting factor in the abundance and spatial distribution of past or extant life on Mars. Although a global average of chemical energy available for microbial metabolism and biomass production on Mars has been estimated previously, issues of how the energy is distributed and which particular environments have the greatest potential to support life remain unresolved. We address these issues using geochemical models to evaluate the amounts of chemical energy available in one potential biological environment, Martian hydrothermal systems. In these models, host rock compositions are based upon the compositions of Martian meteorites, which are reacted at high temperature with one of three groundwater compositions. For each model, the values for Gibbs energy of reactions that are important for terrestrial chemosynthetic organisms and likely representative for putative Martian microbes are calculated. Our results indicate that substantial amounts of chemical energy may be available in these systems, depending most sensitively upon the composition of the host rock. From the standpoint of sources of metabolic energy, it is likely that suitable environments exist to support Martian life.  相似文献   

17.
Evidence of microbial life on Earth has been found in siliceous rock formations throughout the geological and fossil record. To understand the mechanisms of silicification and thus improve our search patterns for evidence of fossil microbial life in rocks, a series of controlled laboratory experiments were designed to simulate the silicification of microorganisms. The bacterial strains Pseudomonas fluorescens and Desulphovibrio indonensis were exposed to silicifying media. The experiments were designed to determine how exposure time to silicifying solutions and to silicifying solutions of different Si concentration affect the fossilization of microbial biofilms. The silicified biofilms were analyzed using transmission electron microscopy (TEM) in combination with energy-dispersive spectroscopy. Both bacterial species showed evidence of silicification after 24 h in 1,000 ppm silica solution, although D. indonensis was less prone to silicification. The degree of silicification of individual cells of the same sample varied, though such variations decreased with increasing exposure time. High Si concentration resulted in better preservation of cellular detail; the Si concentration was more important than the duration in Si solution. Even though no evidence of amorphous silica precipitation was observed, bacterial cells became permineralized. High-resolution TEM analysis revealed nanometer-sized crystallites characterized by lattice fringe-spacings that match the (10-11) d-spacing of quartz formed within bacterial cell walls after 1 week in 5,000 ppm silica solution. The mechanisms of silicification under controlled laboratory conditions and the implication for silicification in natural environments are discussed, along with the relevance of our findings in the search for early life on Earth and extraterrestrial life.  相似文献   

18.
The present investigation uncovers various pieces of evidence for the possible biologically induced mineralization in iron mats associated with a pH-neutral spring in the Borra caves, Vishakhapatnam, India. Electron microscopy [scanning electron microscopy (SEM) and transmission electron microscopy (TEM)] demonstrated large numbers of (i) hollow tubes (diameter ~1?μm) resembling sheaths of the iron-oxidizing bacteria Leptothrix, (ii) thin (diameter <1?μm) solid fibers of uncertain origin, (iii) nanoscale subspherical to irregularly shaped particles encrusting tubes and fibers, and (iv) aggregates of broken and partially disintegrated sheaths, fibers, and particles embedded in extracellular polymeric substances (EPS) occasionally including microbial cells. X-ray microanalyses by energy dispersive spectroscopy (EDS) revealed that the mat accumulated largely Fe but also smaller amounts of Si and traces of P and Ca. Particles rich in Si and Al (possibly kaolinite) and Ca (carbonate) were also observed. High-resolution TEM/EDS of unstained ultrathin sections suggests that microbial sheaths were highly mineralized by amorphous to cryptocrystalline Fe-rich phases and less frequently by other fine-grained and fibrous authigenic claylike minerals. Total number of microorganisms in the iron mats was 5.8×10(5) cells, g sed(-1) (wet weight). Analysis of the 16S rRNA gene diversity revealed microorganisms assigned to eight different phyla [Proteobacteria (62%), Chloroflexi (8%), Bacteroidetes (7%), Planctomycetes (1%), Actinobacteria (5%), Acidobacteria (6%), Nitrospira (1%), Firmicutes (5%)]. Within the Proteobacteria, Betaproteobacteria was the predominant class, which accounted for 28% of the sequences. Within this class some obvious similarities between the obtained sequences and sequences from other cave systems could be seen, especially sequences affiliated with Leptothrix, Siderooxidans, Crenothrix, Comamonadaceae, Dechloromonas, and many uncultured Betaproteobacteria. Four (4%) of the sequences could not be assigned to phylum level but were affiliating with the candidate division TM7 (2%), candidate division OP11 (1%), and candidate division WWE3 (1%). The results allow us to infer a possible relationship of microbial sheaths, EPS, and the iron precipitates to microbial community diversity in the Borra cave springs. Understanding biogenic iron oxides in caves has important astrobiological applications as it provides a potential tool for the detection of extraterrestrial life.  相似文献   

19.
We launched a cryptoendolithic habitat, made of a gneissic impactite inoculated with Chroococcidiopsis sp., into Earth orbit. After orbiting the Earth for 16 days, the rock entered the Earth's atmosphere and was recovered in Kazakhstan. The heat of entry ablated and heated the rock to a temperature well above the upper temperature limit for life to below the depth at which light levels are insufficient for photosynthetic organisms ( approximately 5 mm), thus killing all of its photosynthetic inhabitants. This experiment shows that atmospheric transit acts as a strong biogeographical dispersal filter to the interplanetary transfer of photosynthesis. Following atmospheric entry we found that a transparent, glassy fusion crust had formed on the outside of the rock. Re-inoculated Chroococcidiopsis grew preferentially under the fusion crust in the relatively unaltered gneiss beneath. Organisms under the fusion grew approximately twice as fast as the organisms on the control rock. Thus, the biologically destructive effects of atmospheric transit can generate entirely novel and improved endolithic habitats for organisms on the destination planetary body that survive the dispersal filter. The experiment advances our understanding of how island biogeography works on the interplanetary scale.  相似文献   

20.
Life is constructed from a limited toolkit: the Periodic Table. The reduction of oxygen provides the largest free energy release per electron transfer, except for the reduction of fluorine and chlorine. However, the bonding of O2 ensures that it is sufficiently stable to accumulate in a planetary atmosphere, whereas the more weakly bonded halogen gases are far too reactive ever to achieve significant abundance. Consequently, an atmosphere rich in O2 provides the largest feasible energy source. This universal uniqueness suggests that abundant O2 is necessary for the high-energy demands of complex life anywhere, i.e., for actively mobile organisms of approximately 10(-1)-10(0) m size scale with specialized, differentiated anatomy comparable to advanced metazoans. On Earth, aerobic metabolism provides about an order of magnitude more energy for a given intake of food than anaerobic metabolism. As a result, anaerobes do not grow beyond the complexity of uniseriate filaments of cells because of prohibitively low growth efficiencies in a food chain. The biomass cumulative number density, n, at a particular mass, m, scales as n (> m) proportional to m(-1) for aquatic aerobes, and we show that for anaerobes the predicted scaling is n proportional to m (-1.5), close to a growth-limited threshold. Even with aerobic metabolism, the partial pressure of atmospheric O2 (P(O2)) must exceed approximately 10(3) Pa to allow organisms that rely on O2 diffusion to evolve to a size approximately 10(3) m x P(O2) in the range approximately 10(3)-10(4) Pa is needed to exceed the threshold of approximately 10(2) m size for complex life with circulatory physiology. In terrestrial life, O(2) also facilitates hundreds of metabolic pathways, including those that make specialized structural molecules found only in animals. The time scale to reach P(O(2)) approximately 10(4) Pa, or "oxygenation time," was long on the Earth (approximately 3.9 billion years), within almost a factor of 2 of the Sun's main sequence lifetime. Consequently, we argue that the oxygenation time is likely to be a key rate-limiting step in the evolution of complex life on other habitable planets. The oxygenation time could preclude complex life on Earth-like planets orbiting short-lived stars that end their main sequence lives before planetary oxygenation takes place. Conversely, Earth-like planets orbiting long-lived stars are potentially favorable habitats for complex life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号