首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对静基座平台系统调平进行了研究, 详细分析了四轴平台系统台体坐标 系、框架坐标系及基座坐标系间的空间关系,推导出了台体不同位置调平时框架角间的 关系,设计了补偿平台基座不水平的转位方法。当基座不水平角度较大时,通过该方法 可将平台直接转位至调平角度附近,不需经过粗调平便可直接进入精调平,从而可以使 平台系统的工作过程得到简化,对于提高平台的任意位置转位及自标定、自瞄准效率有 重要意义。  相似文献   

2.
Strapdown INS error model for multiposition alignment   总被引:1,自引:0,他引:1  
The relationship between quaternion errors and tilt angles from true navigation frame to analytic platform frame is newly derived for strapdown inertial navigation system (SDINS). Using the relationship it is shown that the quaternion error model for attitude and velocity is equivalent to the conventional perturbation error model. Based upon the equivalency, the quaternion errors during a multiposition alignment are determined and analyzed. Furthermore, it is shown that the heading rotation of 180 deg achieves the minimal quaternion error for 2-position ground alignment  相似文献   

3.
This paper describes an algorithm which protects a three-gimballed inertial system against gimbal lock while preserving the inertial reference. One sample of the gimbal angles and gimbal angle rates for a torque-free dynamic vehicle provides the information needed to determine whether or not gimbal lock will occur at some later time. When gimbal lock is imminent, the inertial platform is commanded to a new "safe" orientation, and knowledge of the inertial reference is updated accordingly. By iterating this process gimbal lock protection is extended to a vehicle subjected to torques. The results of digital simulations using the Apollo Primary Guidance, Navigation and Control System as a model are presented for various dynamic situations.  相似文献   

4.
This paper presents a quantitative discussion of two error sources which affect the accuracy of data comparison between instrument outputs and reference angle computations during multi-axis evaluation of strapdown gyros. The error due to misalignment of gyro input axes is formulated in terms of closed-form solutions for typical relationships between the three table gimbal rotation histories. If the angular positions of the table gimbal axes are measured by shaft encoders, then any measurement has an uncertainty in the range from plus to minus one-half of the quantization level. It is shown that the effect of encoder quantization error on the computer transformed angles in the bodyfixed coordinate system can be divided into two parts: the initial uncertainty of the zero positions of the gimbals before table motion is begun, and all subsequent error contributions during table test. Typical data for gyro misalignment and encoder quantization error effects are presented.  相似文献   

5.
A self-contained suite of astro-inertial navigation system is capable of autonomous mission and is operationally reliable. The typical astronavigation system (ANS) makes use of star-trackers, which are expensive and complex. To make the system cost effective and less complex, the star-tracker is replaced by a charge coupled device (CCD)-based star sensor, rigidly mounted on a strapdown inertial measurement unit (SIMU) of the system. This electro-optical star sensor is compact and easy to use with an ANS that utilizes efficient star identification techniques. This paper designs an algorithm that estimates axes misalignment angles of strapdown inertial navigation system (SINS) that makes stars' observations utilizing a CCD star sensor. Mathematical modeling of the suggested scheme was carried out and transformations between different frames were exercised. From the image projection geometry, stars' right ascensions and declinations, relative to the body frame, were estimated. Lastly, from the known stars' position vectors in mathematical platform and reference frames, axes misalignment matrix representing SINS attitude errors can be estimated employing the derived relationship.  相似文献   

6.
在利用视觉系统辅助捷联惯性导航系统( SINS)进行定位定姿时,由于两者输出的位置表示方法不同,在信息融合时会存在匹配问题。以相对地理坐标系作为定位定姿系统的导航坐标系,重新对SINS进行了力学编排,分析了其误差传递特性,建立了相对地理坐标系下的状态方程模型,并利用Kalman滤波器实现了视觉辅助惯性定位定姿算法。仿真结果表明,方法避免了信息融合时位置匹配问题,同时降低了系统的计算量,满足了定位定姿系统的精度要求。  相似文献   

7.
平台系统稳定回路依靠对外环、内环和台体的控制使平台台体在各种干扰力矩作用下都能提供精确的惯性导航基准,保证平台系统精度。针对目前回路控制超调量较大的问题,提出一种模糊PI参数在线调整的抗干扰控制方法,经过仿真表明在保证稳定回路快速调节的基础上,稳定回路动态特性得到了改善。该方法对今后新型平台系统伺服回路控制系统设计的进一步提高提供了一定指导作用。  相似文献   

8.
通过建立目标相对运动坐标系和目标相对运动观测模型,研究了在平台摇摆影响下,跟踪系统观测到的目标运动状态的变化。在分析捷联垂直基准补偿原理的基础上建立了捷联垂直基准平台摇摆角补偿模型,建立的模型结合捷联垂直基准系统的测量能力对其补偿算法进行了理论推导,使模型适用于实际捷联垂直基准系统。通过建立模型以及仿真研究了平台摇摆作用下卡尔曼滤波跟踪精度的变化,指出了摆造成卡尔曼滤波跟踪精度降低甚至离散的主要原因在于模型误差增大。设计仿真实验验证了结论的正确性,为进一步改进跟踪手段提供了理论参考。  相似文献   

9.
Corrections of pointing data provided by gimbal readout transducers can be used to compensate for the errors that arise because of gimbal misalignments and inaccuracies in transducer readout. This paper reviews the sources of pointing error in precision gimbaled pointing systems and describes the techniques for determining them. In particular, a method of calibration that is suitable for systems in which constraints on gimbal travel preclude the use of conventional calibration procedures is presented, and the pointing readout accuracy that can be achieved by this method is evaluated.  相似文献   

10.
崔培玲  杨珊  李海涛 《航空学报》2016,37(3):916-927
双框架磁悬浮控制力矩陀螺(MSCMG)框架伺服系统是一个多变量、强耦合、非线性的复杂系统,针对耦合力矩对框架系统速率伺服性能的影响,以及框架系统动力学解耦之后存在残余耦合、卫星运动引起的牵连力矩和非线性摩擦的问题,提出了微分几何法与扩张状态观测器(ESO)相结合的高精度控制方法,在线性化解耦的基础上对残余耦合、牵连力矩及非线性摩擦进行观测补偿以提高框架伺服系统解耦及速率跟踪性能。仿真结果表明、由耦合力矩引起的内、外框架速率波动最大值分别从0.18(°)/s和0.12(°)/s减小到5×10-3(°)/s和4×10-3(°)/s,内、外框架正弦角速度跟踪误差分别从0.18(°)/s和0.19(°)/s减小到0.005(°)/s和0.004(°)/s。所提出的方法实现了框架伺服系统的动力学解耦以及非线性摩擦和牵连力矩的补偿,提高了框架系统的解耦性能和速率伺服精度。  相似文献   

11.
Strapdown inertial navigation system algorithms based on dual quaternions   总被引:3,自引:0,他引:3  
The design of strapdown inertial navigation system (INS) algorithms based on dual quaternions is addressed. Dual quaternion is a most concise and efficient mathematical tool to represent rotation and translation simultaneously, i.e., the general displacement of a rigid body. The principle of strapdown inertial navigation is represented using the tool of dual quaternion. It is shown that the principle can be expressed by three continuous kinematic equations in dual quaternion. These equations take the same form as the attitude quaternion rate equation. Subsequently, one new numerical integration algorithm is structured to solve the three kinematic equations, utilizing the traditional two-speed approach originally developed in attitude integration. The duality between the coning and sculling corrections, raised in the recent literature, can be essentially explained by splitting the new algorithm into the corresponding rotational and translational parts. The superiority of the new algorithm over conventional ones in accuracy is analytically derived. A variety of simulations are carried out to support the analytic results. The numerical results agree well with the analyses. The new algorithm turns out to be a better choice than any conventional algorithm for high-precision navigation systems and high-maneuver applications. Several guidelines in choosing a suitable navigation algorithm are also provided.  相似文献   

12.
李海涛  林杰  韩邦成 《航空学报》2018,39(4):421641-421641
针对双框架变速率控制力矩陀螺(DGVSCMG)两种工作模式下内、外框架系统存在的不匹配干扰抑制问题,提出一种基于扩张状态观测器与状态反馈的扰动抑制方法。在对飞轮工作模式和陀螺工作模式下内、外框架系统的干扰进行建模和分析的基础上,针对其不匹配干扰设计了扩张状态观测器,通过坐标变换减小框架系统扰动对不匹配通道的影响,并结合状态反馈控制设计了复合控制器,同时对全局系统稳定性进行了分析。对框架系统进行的仿真结果验证了所提复合控制方法的有效性。实验结果表明,所提出的控制方法能有效减小耦合力矩对内外框架角速率带来的影响,在飞轮模式下使得内外框架的角速率跳动量分别降低了85%和78%,且在陀螺模式下使外框架角速率跳动量降低了75%。  相似文献   

13.
在载体大机动飞行的背景下,要求惯性平台具备全姿态的功能。传统的认知中,三轴平台因为内框架角不能工作在接近于±90°的大角度而不具备全姿态功能,为此在内框架增加了限位装置以限制内框架角的工作范围。在三轴平台的基础上发展出了四轴平台以使内部三个轴始终处于正交状态,从而实现全姿态功能,但外框架角却在工作于±90°时不能保证内框架角处于零位。本文提出了一种基于稳定奇异值的惯性平台全姿态控制方法,验证了三轴平台在框架锁定时通过主动控制可具备自解锁功能,从而具备全姿态能力,颠覆了传统参考资料中对三轴平台的认知。相对于四轴平台,三轴平台少了一个框架,体积和质量都可减小。因此,在高精度惯性导航的工程应用中,将会从四轴平台又回归到三个框架角都具备±180°回转能力的三轴平台。  相似文献   

14.
Modeling quaternion errors in SDINS: computer frame approach   总被引:2,自引:0,他引:2  
We propose new equivalent tilt error models which are applicable to the analysis of the terrestrial strapdown inertial navigation systems (SDINS), based on the quaternions. The currently available equivalent tilt error models, like the conventional Φ model of the gimbaled inertial navigation systems (GINS), are derived only by the true frame approach. The true frame approach has a computational disadvantage that it produces an error model where the attitude error equation is coupled with its position and velocity error equations. The motivation of this work is to solve this problem. As a result, two kinds of error models are derived. Among them, one is derived by the computer frame approach for practical onboard implementations. Thus, like the conventional GINS Ψ model, its attitude error equation is decoupled from the position and velocity error equations. The other is derived in order to show the relationship between the true frame approach and the computer frame approach which are applied to the quaternion-based SDINS. Thus, like the GINS δΘ model, it can be used to transform the error variables into each other which are calculated by the two different approaches  相似文献   

15.
This article proposes a new inner attitude integration algorithm to improve attitude accuracy of the strapdown inertial attitude and heading reference system(SIAHRS), which, by means of a Kalman filter, integrates the calculated attitude from the accelerometers in inertial measuring unit(IMU), called damping attitudes, with those from the conventional IMU. As vehicle's acceleration could produce damping attitude errors, the horizontal outputs from accelerometers are firstly used to judge the vehicle's motion so as to determine whether the damping attitudes could be reasonably applied. This article also analyzes the limitation of this approach. Furthermore, it suggests a residual chi-square test to judge the validity of damping attitude measurement in real time, and accordingly puts forward proper information fusion strategy. Finally, the effectiveness of the proposed algorithm is proved through the experiments on a real system in dynamic and static states.  相似文献   

16.
The development of a strapdown inertial navigation system (SINS) for aerodynamically controlled vehicles, which are limited to altitudes below 30 km (that is, a small distance compared with the Earth's radius of about 7000 km), or using the so-called flat-Earth model (FEM), is the principal objective of this work. In dealing with the FEM equations, the north, east, down (NED) frame on the surface of the Earth is taken as an inertial reference frame. Although, this frame is both accelerating and rotating, the accelerations associated with the Earth's rotation are negligible compared with the acceleration that can be produced by a maneuvering aircraft. Also, in this model, the gravity is taken as constant. In developing the SINS for the FEM, the aerodynamic force and moment have dominant roles, depending primarily on such variables as the angle of attack and sideslip, their derivatives, components of the angular velocity of the aircraft, and the control inputs. On the other hand, the SINS deals with such variables as the small-angle rotation vectors. Thus, it was necessary to link both set of variables as state variables of the strapdown FEM as is done in this work. The developed model is relevant for small (less than 200) angles of attack and sideslip.  相似文献   

17.
转台内框是决定转台测试精度的重要部件。本文采用有限元方法,计算了内框在同时受到负载热和重力耦合作用下的应力和变形。结果表明,内框在热力耦合的影响下产生的变形量,比单独受热和受力线性叠加后产生的形变量要大。热力耦合分析综合考虑了各误差源对转台精度的影响,可用于指导结构优化设计。  相似文献   

18.
This paper discusses the relationships that must be considered in analyzing the design and performance of typical precision stabilization systems. In particular, the disturbance inputs that are due to kinematic and geometrical coupling are examined in depth by considering systems implemented with either a conventional two-axis gimbal or a traditional half-angle mirror assembly. The disturbance coupling that is associated with the gimbal drive actuators and the effect of structural compliance on the stabilization control loops are also discussed in detail. Other aspects of stabilization system design that are considered include the potential improvements in performance that can be achieved by using appropriate multiaxis gimbal configurations and by utilizing the angular pointing characterisitics of beam expansion telescopes.  相似文献   

19.
目前,成熟应用的航空重力测量系统主要为两轴阻尼平台,例如LaCoste&Romberg海空重力仪,以及三轴惯导平台,例如GT-1A航空重力仪和AirGrav航空重力仪。虽然捷联式航空重力仪研制及应用尚未成熟,但通过本文对自主研制的激光捷联式与速率方位平台式航空重力仪进行的车载重力测量试验表明,两种类型重力仪样机获得的自由空间重力异常精度相当。  相似文献   

20.
李阳  肖增利  孙芃  彭思  张新禹 《航空学报》2014,35(2):497-505
针对相控阵雷达系统中平台扰动引起的波束指向变化问题,提出一种捷联波束稳定方法。该方法作为独立模块实现,由角速度传感器和信号处理机组成,无需精确的初始姿态。角速度传感器感知平台扰动造成的天线转动角速度,信号处理机完成补偿角的迭代求解和波束的控制。通过算法仿真和利用单轴转台模拟平台扰动验证可得,采用捷联波束稳定方法后,雷达测量角误差明显减小,隔离度指标有了极大改善。因此,该方法能够有效地减小平台扰动对波束指向的影响,易于工程实现,适用于小型化的无人机等平台。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号