首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
研究探测近地空间自旋稳定小卫星姿态动力学建模与姿态控制问题,探测任务对该卫星姿态控制有着特殊要求。建模中特别考虑了自旋小卫星双侧伸杆扰动对其姿态运动的影响。利用自旋卫星的章动特性,设计了姿态一章动联合控制器,根据星体横向角速度相位和喷气力矩在惯性空间的方位来确定喷气时刻,采取先章动粗控与进动控制,后章动精控的策略。当卫星受空间扰动力矩长期作用产生较大章动角而需调姿进行轨道机动时,可以应用本控制器方便地调整自旋轴的指向。  相似文献   

2.
对环月地轨道环绕卫星所受重力梯度力矩进行了分析.在分析的基础上,利用在轨飞行数据得到卫星实际质量特性,并设计俯仰姿态偏置的方法,实现卫星重力梯度配平.通过嫦娥五号服务舱的实际在轨飞行,证明重力梯度配平方法可以降低星体所受重力梯度力矩,达到延长卸载周期的目的.  相似文献   

3.
摘要: 针对在轨姿态异常后星体高速自旋情况,开展星体自旋角速度确定方法研究.提出一种基于太阳敏感器测量数据确定自旋角速度的方法,并对自旋角速率确定误差进行分析,得到各误差源对确定精度的影响关系;基于角速率确定误差分析结论,给出根据角速度大小选取不同时间间隔测量数据的策略,通过大时间间隔测量数据的选取,保证小角速度情况下的确定精度.所提出方法的有效性通过数学仿真验证,并在实际应用中基于太阳敏感器遥测数据获取在轨姿态异常卫星角速度.  相似文献   

4.
赤道同步卫星轨道倾角的摄动,主要是由于太阳、月球的引力所引起的。它们的作用使得卫星轨道平面围绕三个轴进动。这三个轴是黄极、北极和白极。绕此三轴进动的合成,就是赤道同步卫星轨道倾角变化的近似规律。这一结果,可从解Lagrangè行星运动方程得到。本文采用一个简单的方法可得到相近的结论。许多结果和现有资料非常接近。这个方法的基本思路是:设卫星在轨道上运动如同一个“陀螺”,在受到外力矩作用下产生进动。Thomson用此法研究过地球扁率引起的卫星轨道面的进动。我们用它来研究同步卫星轨道倾角的变化,也是有效的,尤其给出一个清晰的运动模型。  相似文献   

5.
针对在轨服务任务对于空间非合作目标的自主相对导航需求,提出了一种基于双目视觉的自主姿态估计方法。该方法以Markley变量描述目标的姿态运动,并利用双目相机对目标表面的特征点进行观测,利用特征点的运动规律与目标姿态运动的相关性,并通过容积卡尔曼滤波算法实现了对非合作目标角速度与自旋轴方向的估计。数学仿真验证了所给出的姿态估计方法,并分析了估计精度的影响因素。  相似文献   

6.
针对三轴稳定卫星从高速自旋异常状态恢复到正常姿态的欠驱动问题,提出一种欠驱动的消旋和进动控制方法.对推力器的选取原则、"整数倍自旋周期全喷气"方式和"对称点喷"方式的消旋策略、脉冲调制方式的进动控制策略等进行介绍,给出实施步骤和工程处理办法.数学仿真和在轨验证结果表明了该方法有效、工程可操作性强.该方法不仅适用于星上自主控制,还适用于地面遥控控制.  相似文献   

7.
气动力矩和重力梯度矩实现微小卫星三轴姿态控制   总被引:2,自引:0,他引:2  
提出运用低轨道两个主要环境力矩 (重力梯度矩和气动力矩 )实现微小卫星三轴姿态被动控制方案。重力梯度矩提供俯仰和滚转恢复力矩 ,气动力矩提供偏航和俯仰恢复力矩 ;通过姿态稳定性分析和姿控过程动态仿真 ,结果表明此卫星具有结构简单、姿态稳定精度高的优点。  相似文献   

8.
传统的利用地球敏感器和太阳敏感器作为测量仪器的自旋卫星姿态确定方法存在系统误差和安装误差等,从而导致自旋姿态确定误差较大的问题,文章提出了一种利用星敏感器获取的连续星图估计卫星自旋姿态参数的新方法。该方法以卫星的自旋轴和旋转角速度作为状态变量,通过星敏感器连续跟踪拍摄的恒星的成像位置作为观测量,利用无迹卡尔曼滤波估计出卫星的自旋姿态参数。仿真结果表明,在星敏感器的精度为3″时,该方法的自旋轴估计精度为0.3448″,自旋角速度估计精度为10-4(°)/s数量级。  相似文献   

9.
给出一种选择双自旋通信卫星在任意轨道飞行时最佳通信姿态的计算方法。根据测得的轨道平根数及姿态值,应用微机可对卫星轨道参数、星下点轨迹、地面站跟踪条件、姿态测量参数、卫星的太阳角、对应于各测控站的卫星测控天线增益、对应于各通信站的通信天线增益和波束中心地面轨迹进行快速计算,给出飞行试验需要的全部卫星飞行参数。根据飞行试验中对卫星姿态选择的附加限制,可以选择出最佳通信姿态,保证获得最长的通信时间。  相似文献   

10.
带有大型网状展开天线的同步轨道移动通信卫星,一般通过卫星本体的姿态控制间接保障星上通信天线的指向精度,难以避免天线因自身安装、变形、挠性振动等引起的指向误差.提出直接利用射频敏感器测量的信标信号误差确定卫星三轴姿态,并计算天线保持目标指向所需三轴姿态角偏差,通过卫星姿态控制系统实时或离线姿态修正以保证天线指向精度.利用数学仿真方式验证算法正确性和有效性.  相似文献   

11.
To solve the problem of thrust vector misalignment from the Cubesat center of mass during orbital maneuver, spin-stabilized method is applied to eliminate velocity pointing error. Spinning thrusting Cubesat model involves the effects of mass variation and jet damping is established. Analytical solutions for the angular velocity, nutation angle, Euler angle, and inertial velocity with nonzero initial conditions are derived. Simulations show that the analytical solutions closely match numerical simulations. Based on the analytical solutions, the velocity pointing error influencing factors is analyzed. The results show that the velocity pointing error caused by initial transverse velocity, nutation angle and transverse disturbance torque can be reduced by raising the spin rate, but the initial Euler angle need to be limited. Also, the spinning thrusting maneuver can allow for a lower spin rate by increasing the axial moment of inertia.  相似文献   

12.
Due to the presence of periodic forcing terms in the gravity gradient torque, orbit eccentricity may produce large response for the roll, yaw and pitch angles. This paper investigates the influence of the orbit eccentricity on the performance of the attitude determination and control subsystem (ADCS) pointing of passive Low Earth Orbit (LEO) satellites stabilized by a gravity gradient boom or having long appendages before and after the deorbiting operation. The contribution of this work is twofold. First, the satellite attitude dynamics and kinematics are modeled by introducing the orbit eccentricity in the equations of motion of a LEO satellite in order to provide the best scenario in which satellite operators can keep the nominal functionality of LEO satellites with a gravity gradient boom after the deorbiting operation. Second, a Quaternion-based Extended Kalman Filter (EKF) is analyzed when the orbit eccentricity is considered in order to determine the influence of this disturbance on the convergence and stability of the filter. The simulations in this work are based on the true parameters of Alsat-1 which is a typical LEO satellite stabilized by a gravity gradient boom. The results show that the orbit eccentricity has a big influence on the pointing system accuracy causing micro-vibrations that affect the geocentric pointing particularly after the deorbiting phase. In this case, satellites have no orbital correction option. The Quaternion-based Extended Kalman Filter analyzed in this paper, achieved satisfactory results for eccentricity values less than 0.4 with respect to pointing system accuracy. However, singularities were observed for eccentricity values greater than 0.4.  相似文献   

13.
近年来,随着卫星技术的快速发展和低轨(low earth orbit,LEO)卫星宽带互联网建设需求的不断增加,低轨大规模星座发展日新月异。针对Starlink星座初始化部署问题,首先论述了“星链”(Starlink)星座现状,分析在轨卫星高度变化。然后利用公开的两行轨道根数(two-line element,TLE),从卫星发射入轨、轨道面分布两个方面,简要分析了Starlink星座的部署情况,给出升交点的变化规律;同时仿真分析了Starlink星座对地面的覆盖性能。最后,给出星座轨道面和相位分布、故障卫星处置以及可见卫星数量。所分析的结果以期为中国未来部署大规模LEO星座的建设提供借鉴。  相似文献   

14.
轨道姿态误差对TDI-CCD相机行周期及偏流角的影响分析   总被引:3,自引:0,他引:3  
与其他文献的几何方法不同,本文从运动学角度出发,选定合适的参考系后,按照一系列不同坐标系的坐标转换,完成星下点运动速度矢量在敏感器坐标系的推导,把姿态、轨道、安装偏差作为相关参数,经过一系列坐标变换,表征在最终的偏流角公式及行转移频率动态公式中;在通常的对地稳定指向模式下,姿态参数和安装偏差很小,仅保留一阶小量.根据矢量表达,解析地给出行转移频率及偏流角与轨道、姿态的关系,从而方便分析误差的影响,并以几个典型的低轨为实例作了说明.  相似文献   

15.
针对卫星在执行丢弃载荷或捕获目标等复杂任务时遭遇的姿态突然发生变化的问题,采用深度增强学习方法对卫星姿态进行控制,使卫星恢复稳定状态。具体来说,首先搭建飞行器的姿态动力学环境,并将连续的控制力矩输出离散化,然后采用Deep Q Network算法进行卫星自主姿态控制训练,以姿态角速度趋于稳定作为奖励获得离散行为的最优智能输出。仿真试验表明,面向空间卫星姿态控制的深度增强学习算法能够在卫星受到突发随机扰动后稳定卫星姿态,并能有效解决传统PD控制器依赖被控对象质量参数的难题。所提出的方法采用自主学习的方式对卫星姿态进行控制,具有很强的智能性和一定的普适性,在未来卫星执行复杂空间任务中的智能控制方面有着很好的应用潜力。  相似文献   

16.
It is estimated that more than 22,300 human-made objects are in orbit around the Earth, with a total mass above 8,400,000 kg. Around 89% of these objects are non-operational and without control, which makes them to be considered orbital debris. These numbers consider only objects with dimensions larger than 10 cm. Besides those numbers, there are also about 2000 operational satellites in orbit nowadays. The space debris represents a hazard to operational satellites and to the space operations. A major concern is that this number is growing, due to new launches and particles generated by collisions. Another important point is that the development of CubeSats has increased exponentially in the last years, increasing the number of objects in space, mainly in the Low Earth Orbits (LEO). Due to the short operational time, CubeSats boost the debris population. One of the requirements for space debris mitigation in LEO is the limitation of the orbital lifetime of the satellites, which needs to be lower than 25 years. However, there are space debris with longer estimated decay time. In LEÓs, the influence of the atmospheric drag is the main orbital perturbation, and is used in maneuvers to increment the losses in the satellite orbital energy, to locate satellites in constellations and to accelerate the decay.The goal of the present research is to study the influence of aerodynamic rotational maneuver in the CubeSat?s orbital lifetime. The rotational axis is orthogonal to the orbital plane of the CubeSat, which generates variations in the ballistic coefficient along the trajectory. The maneuver is proposed to accelerate the decay and to mitigate orbital debris generated by non-operational CubeSats. The panel method is selected to determine the drag coefficient as a function of the flow incident angle and the spinning rate. The pressure distribution is integrated from the satellite faces at hypersonic rarefied flow to calculate the drag coefficient. The mathematical model considers the gravitational potential of the Earth and the deceleration due to drag. To analyze the effects of the rotation during the decay, multiple trajectories were propagated, comparing the results obtained assuming a constant drag coefficient with trajectories where the drag coefficient changes periodically. The initial perigees selected were lower than 400 km of altitude with eccentricities ranging from 0.00 to 0.02. Six values for the angular velocity were applied in the maneuver. The technique of rotating the spacecraft is an interesting solution to increase the orbit decay of a CubeSat without implementing additional de-orbit devices. Significant changes in the decay time are presented due to the increase of the mean drag coefficient calculated by the panel method, when the maneuver is applied, reducing the orbital lifetime, however the results are independent of the angular velocity of the satellite.  相似文献   

17.
光压摄动对卫星姿态轨道耦合的影响分析   总被引:2,自引:1,他引:1  
随着卫星对地测量精度要求的不断提高, 对卫星轨道的精度要求也随之提高. 目前Topex, Jason-1, Jason-2等一系列海洋测地卫星的轨道计算精度已经达到厘米量级, 相应对卫星动力学模型的要求也越来越精细. 以Topex海洋测地卫星为背景, 考虑卫星帆板有规律的运动, 将其几何形状简化为高精度轨道计算中比较通用的Boxing-Wing模型, 计算了Topex卫星的Boxing-Wing模型在轨运行中受到的太阳光压力及光压力矩. 考虑卫星姿态和轨道耦合的情况下, 计算了太阳光压力及光压力矩对Topex卫星轨道半长轴和卫星姿态的影响. 通过一个轨道周期的计算可知, 光压对卫星轨道半长轴的影响大约为9cm, 对卫星滚动角和俯仰角的影响在6°左右, 因此, 在高精度的轨道计算和姿态控制中这个影响是应该考虑的.   相似文献   

18.
卫星姿态大角度机动的轨迹规划和模型预测与反演控制   总被引:2,自引:0,他引:2  
空间科学观测、态势感知、对地遥感、操控服务等应用对卫星提出了高精度、高稳定度、平稳柔顺大角度姿态机动的需求。采用欧拉角形式,对时变、非线性卫星姿态动力学系统进行了分析与建模,将每一个测控周期视为一个姿态机动过程。基于动力学系统受控运动的规律,在每一个姿态跟踪机动过程中,预测姿态偏差,通过卫星姿态演化的反演得到控制指令。以三角函数为基础,设计了一种卫星姿态大角度机动的运动轨迹规划方法。本文所述的轨迹规划及控制方法具有轨迹跟踪精度高、稳定性好,跟踪和机动过程平稳柔顺的特点。数学仿真验证了该方法的可行性和有效性。 关键词:轨迹规划; 模型预测与反演控制; 卫星姿态; 大角度机动  相似文献   

19.
一种轮控卫星姿态机动变结构控制器   总被引:1,自引:0,他引:1  
针对小卫星3轴反作用轮姿态控制系统的非线性特性,应用误差四元数来描述姿态运动,将星体大角度姿态机动问题转化为误差四元数的调节问题.利用误差四元数和误差角速度建立滑动模态,并基于Lyapunov定理推导出一种姿态机动的引入角加速度负反馈的变结构控制律.仿真结果表明,该控制律能够提高收敛速度,降低机动过程中角速度的超调量和对起始力矩的要求.同时,在模型参数不确定和有外干扰的情况下该控制律也具有全局稳定性和鲁棒性.   相似文献   

20.
Space debris, such as defunct satellites and upper stages of rockets, becomes an uncooperative target after losing its attitude control and communication ability. In addition, tumbling motion can occur due to environmental perturbations and residual angular momentum prior to the object’s end-of-mission. To minimize the collision risk during docking and capturing of the tumbling target, a non-contact method based on the eddy current effect is put forward to transmit the control torque to the tumbling target. The main idea is to induce a controllable torque on the conducting surface of the tumbling target using a rotational magnetic field generated by a Halbach rotor. The radial and axial Halbach rotors are used to damp the spinning and nutation motions of the target, respectively. The normal and tangential force are evaluated concerning the relative pose between the chaser and the target. A simplified dynamic model of the nutation damping and despinning processes is developed and the influences of the asymmetrical principal moments of inertia and transverse angular velocity are discussed. The numerical simulation results show that the designed Halbach rotor stabilized the target attitude within an acceptable time. The electromagnetic nutation damping and despinning method provides new solutions for the development of on-orbit capture technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号