首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ion irradiation of carbon containing ices produces several effects among which the formation of complex molecules and even refractory organic materials whose spectral color and molecular complexity both depend on the amount of deposited energy. Here results from laboratory experiments are summarized. Their relevance for the formation and evolution of simple molecules and complex organic materials on planetary bodies in the external Solar System is outlined.  相似文献   

2.
Different estimates based on dynamical considerations, lunar cratering rates, Solar System chemical abundances, and the single-impact theory on the origin of the Earth-Moon system suggest that comets and other related small, volatile-rich primitive minor bodies captured by the Earth during the early Archean must have been a major source of volatiles on our planet. It is likely that a substantial fraction of the organic molecules present in the colliding cometary nuclei, which may have included nitrogen bases and the precursors of amino acids, were destroyed due to the high temperatures and shock wave energy associated with the collision. However, the presence of H2O, CN, CH, CO, CO2 and other carbon-bearing molecules and radicals in the atmosphere of the Sun and in circumstellar shells around carbon-rich stars suggests that at least simple carbon species could have survived the cometary collisions. Under the anoxic conditions thought to prevail in the prebiotic terrestrial paleoatmosphere, the post-collisional formation of a large number of excited molecules and radicals, and the rapid quenching of the expanding gaseous ball may have led, upon rapid cooling, to the formation of molecules of biogenic elements and to their eventual deposition in localized environments where complex organic compounds of biochemical significance may have been produced and accumulated.  相似文献   

3.
Many bodies in the outer Solar System display the presence of low albedo materials. These materials, evident on the surface of asteroids, comets, Kuiper Belt objects and their intermediate evolutionary step, Centaurs, are related to macromolecular carbon bearing materials such as polycyclic aromatic hydrocarbons and organic materials such as methanol and related light hydrocarbons, embedded in a dark, refractory, photoprocessed matrix. Many planetary rings and satellites around the outer gaseous planets display such component materials. One example, Saturn's largest satellite, Titan, whose atmosphere is comprised of around 90% molecular nitrogen N2 and less than 10% methane CH4, displays this kind of low reflectivity material in its atmospheric haze. These materials were first recorded during the Voyager 1 and 2 flybys of Titan and showed up as an optically thick pinkish orange haze layer. These materials are broadly classified into a chemical group whose laboratory analogs are termed "tholins", after the Greek word for "muddy". Their analogs are produced in the laboratory via the irradiation of gas mixtures and ice mixtures by radiation simulating Solar ultraviolet (UV) photons or keV charged particles simulating particles trapped in Saturn's magnetosphere. Fair analogs of Titan tholin are produced by bombarding a 9:1 mixture of N2:CH4 with charged particles and its match to observations of both the spectrum and scattering properties of the Titan haze is very good over a wide range of wavelengths. In this paper, we describe the historical background of laboratory research on this kind of organic matter and how our laboratory investigations of Titan tholin compare. We comment on the probable existence of polycyclic aromatic hydrocarbons in the Titan Haze and how biological and nonbiological racemic amino acids produced from the acid hydrolysis of Titan tholins make these complex organic compounds prime candidates in the evolution of terrestrial life and extraterrestrial life in our own Solar System and beyond. Finally, we also compare the spectrum and scattering properties of our resulting tholin mixtures with those observed on Centaur 5145 Pholus and the dark hemisphere of Saturn's satellite Iapetus in order to demonstrate the widespread distribution of similar organics throughout the Solar System.  相似文献   

4.
Mixtures of molecular nitrogen and methane have been identified in numerous outer Solar Systemices including the icy surfaces of Pluto and Triton. We have simulated the interaction of ionizing radiation in the Solar System by carrying out a radiolysis experiment on a methane – molecular nitrogen ice mixture with energetic electrons. We have identified the hydrogen cyanide molecule as the most prominent carbon–nitrogen-bearing reaction product formed. Upon warming the irradiated sample, we followed for the first time the kinetics and temporal evolution of the underlying acid–base chemistry which resulted in the formation of the cyanide ion from hydrogen cyanide. On the surfaces of Triton and Pluto and on comets in Oort’s cloud this sort of complex chemistry is likely to occur. In particular, hydrogen cyanide can be produced in low temperature environments (Oort cloud comets) and may be converted into cyanide ions once the comets reach the warmer regions of the Solar System.  相似文献   

5.
The investigation of small bodies, comets and asteroids, can contribute substantially to our understanding of the formation and history of the Solar System. In-situ observations by Landers play a prominent role in this field.The Rosetta Lander – Philae – is currently on its way to comet 67P/Churyumov–Gerasimenko. It will land in November 2014 and perform numerous experiments with a suite of 10 scientific instruments.Philae has been designed to cope with a wide range of possible comet properties. The considerations taken during its development are relevant for future Lander missions to small bodies in the Solar System.In addition the paper provides a review of alternative concepts, studied or developed for various missions like Phobos, Hayabusa/Minerva or Géocroiseur/Leonard.Various missions to small bodies in the Solar System, including Landers, are currently studied (e.g., Marco Polo). The paper will address the mission options and compare applicable technologies with the solutions chosen for Philae.  相似文献   

6.
Chemical evolution of primitive solar system bodies.   总被引:1,自引:0,他引:1  
In this paper we summarize some of the most salient observations made recently on the organic molecules and other compounds of the biogenic elements present in the interstellar medium and in the primitive bodies of the solar system. They include the discovery of the first phosphorus molecular species in dense interstellar clouds, the presence of complex organic ions in the dust and gas phase of Halley's coma, the finding of unusual, probably presolar, deuterium-hydrogen ratios in the amino acids of carbonaceous chondrites, and new developments on the chemical evolution of Titan, the primitive Earth, and early Mars. Some of the outstanding problems concerning the synthesis of organic molecules on different cosmic bodies are also discussed from an exobiological perspective.  相似文献   

7.
Hopper concepts for small body landers   总被引:3,自引:0,他引:3  
The investigation of small bodies, comets and asteroids, can contribute substantially to our understanding of the formation and history of the Solar System. In situ observations by landers play an important role in this field.  相似文献   

8.
The present experiment indicates that oligopeptides are easily produced in solid state from mixtures of simple amino acids by irradiating with high energy charged particles. We investigated such amino acids and their mixtures as tryptophan, tyrosine and glycine. The thin films was irradiated with protons (6.6 MeV). Such dipeptides as Trp-Trp, Gly-Tyr, Tyr-Gly, and Tyr-Tyr have been detected as products of irradiation. Cosmic rays might be an effective energy source for abiotic formation of bioorganic compounds on the surface of small bodies in the solar system on early stage of formation of planets as well as at present day.  相似文献   

9.
The main long-term objective of the space exploration program is the colonization of the planets of the Solar System. The high cosmic radiation equivalent dose rate represents an inescapable problem for the safe establishment of permanent human settlements on these planets. The unshielded equivalent dose rate on Mars ranges between 100 and 200 mSv/year, depending on the Solar cycle and altitude, and can reach values as high as 360 mSv/year on the Moon. The average annual effective dose on Earth is about 3 mSv, nearly 85% of which comes from natural background radiation, reduced to less than 1 mSv if man-made sources and the internal exposure to Rn daughters are excluded. However, some areas on Earth display anomalously high levels of background radiation, as is the case with thorium-rich monazite bearing sand deposits where values 200–400 times higher than the world average can be found. About 2% of the world’s population live above 3 km and receive a disproportionate 10% of the annual effective collective dose due to cosmic radiation, with a net contribution to effective dose by the neutron component which is 3–4 fold that at sea level. Thus far, epidemiological studies have failed to show any adverse health effects in the populations living in these terrestrial high-background radiation areas (HBRA), which provide an unique opportunity to study the health implications of an environment that, as closely as possibly achievable on Earth, resembles the chronic exposure of future space colonists to higher-than-normal levels of ionizing radiation. Chromosomal aberrations in the peripheral blood lymphocytes from the HBRA residents have been measured in several studies because chromosomal damage represents an early biomarker of cancer risk. Similar cytogenetic studies have been recently performed in a cohort of astronauts involved in single or repeated space flights over many years. The cytogenetic findings in populations exposed to high dose-rate background radiation on Earth or in space will be discussed.  相似文献   

10.
Jupiter’s icy moon Europa is one of most promising places in our Solar System where possible extraterrestrial life forms could exist either in the past or even presently. The Europa Lander mission, an exciting part of the international Europa Jupiter System Mission (EJSM/Laplace), considers in situ planetary exploration of the moon. The distance of Europa from the Earth and the Sun asks for autonomous analytical tools that maximize the scientific return at minimal resources, demanding new experimental concepts. We propose a novel instrument, based on the atomic spectroscopy of laser generated plasmas for the elemental analysis of Europa’s surface materials as far as it is in reach of the lander for example by a robotic arm or a mole, or just onboard the lander. The technique of laser-induced plasma spectrometry provides quantitative elemental analysis of all major and many trace elements. It is a fast technique, i.e. an analysis can be performed in a few seconds, which can be applied to many different types of material such as ice, dust or rocks and it does not require any sample preparation. The sensitivity is in the range of tens of ppm and high lateral resolution, down to 50 μm, is feasible. In addition, it provides the potential of depth profiling, up to 2 mm in rock material and up to a few cm in more transparent icy matrices. Key components of the instrument are presently developed in Germany for planetary in situ missions. This development program is accompanied by an in-depth methodical investigation of this technique under planetary environmental conditions.  相似文献   

11.
The science community has continued to be interested in planetary entry probes, aerocapture, and sample return missions to improve our understanding of the Solar System. As in the case of the Galileo entry probe, such missions are critical to the understanding not only of the individual planets, but also to further knowledge regarding the formation of the Solar System. It is believed that Saturn probes to depths corresponding to 10 bars will be sufficient to provide the desired data on its atmospheric composition. An aerocapture mission would enable delivery of a satellite to provide insight into how gravitational forces cause dynamic changes in Saturn’s ring structure that are akin to the evolution of protoplanetary accretion disks. Heating rates for the “shallow” Saturn probes, Saturn aerocapture, and sample Earth return missions with higher re-entry speeds (13–15 km/s) from Mars, Venus, comets, and asteroids are in the range of 1–6 KW/cm2. New, mid-density thermal protection system (TPS) materials for such probes can be mission enabling for mass efficiency and also for use on smaller vehicles enabled by advancements in scientific instrumentation. Past consideration of new Jovian multiprobe missions has been considered problematic without the Giant Planet arcjet facility that was used to qualify carbon phenolic for the Galileo probe. This paper describes emerging TPS technologies and the proposed use of an affordable, small 5 MW arcjet that can be used for TPS development, in test gases appropriate for future planetary probe and aerocapture applications. Emerging TPS technologies of interest include new versions of the Apollo Avcoat material and a densified variant of Phenolic Impregnated Carbon Ablator (PICA). Application of these and other TPS materials and the use of other facilities for development and qualification of TPS for Saturn, Titan, and Sample Return missions of the Stardust class with entry speeds from 6.0 to 28.6 km/s are discussed.  相似文献   

12.
It is now well established that material naturally moves around the Solar System, even from planetary surface to planetary surface. Accordingly, the idea that life is distributed throughout space and did not necessarily originate on the Earth but migrated here from elsewhere (Panspermia) is increasingly deemed worthy of consideration. If life arrived at the Earth from space, its relative speed will typically be of order many km s-1, and the resulting collision with the Earth and its atmosphere will be in the hypervelocity regime. A mechanism for the bacteria to survive such an impact is required. Therefore a programme of hypervelocity impacts in the laboratory at (4.5 +/- 0.6) km s-1 was carried out using bacteria (Rhodococcus) laden projectiles. After impacts on a variety of target materials (rock, glass and metal) attempts were made to culture Rhodococcus from the surface of the resulting craters and also from the target material ejected during crater formation. Control shots with clean projectiles yielded no evidence for Rhodococcus growth from any crater surface or ejecta. When projectiles doped with Rhodococcus were used no impact crater surface yielded colonies of Rhodococcus. However, for four shots of bacteria into rock (two on chalk and two on granite) the ejecta was afterwards found to give colonies of Rhodococcus. This was not true for shots onto glass. In addition, shots into aerogel (density 96 kg m-3) were also carried out (two with clean projectiles and two with projectiles with Rhodococcus). This crudely simulated aero-capture in a planetary atmosphere. No evidence for Rhodococcus growth was found from the projectiles captured in the aerogel from any of the four shots.  相似文献   

13.
PAHs (polycyclic aromatic hydrocarbons) are probably present as a mixture of neutral and ionized species and are responsible for the set of infrared emission bands in the 2-15 microns regions, which are observed in many different objects like reflection and planetary nebulae and external galaxies. PAHs are suggested to be the most abundant free organic molecules and ubiquitous in space. PAHs might also exist in the solid phase, included in interstellar ices in dense clouds. A complex aromatic network is expected on interstellar grains in the diffuse interstellar medium. The existence of an aromatic kerogen-like structure in carbonaceous meteorites and its similarity with interstellar spectra suggests a link between interstellar matter and primitive Solar System bodies.  相似文献   

14.
The hypothesis on exogenous origin of organic matter on the early Earth is strongly supported by the detection of a large variety of organic compounds (including amino acids and nucleobases) in carbonaceous chondrites. Whether such complex species can be successively delivered by other space bodies (comets, asteroids and interplanetary dust particles) is unclear and depends primarily on capability of the biomolecules to survive high temperatures during atmospheric deceleration and impacts to the terrestrial surface. Recent simulation experiments on amino acid and nucleic acid base pyrolysis under oxygen-free atmosphere demonstrated that simple representatives of these (considered thermally unstable) compounds can survive at 1-10% level a rapid heating at 500-600 degrees C. In the present work, we report on new data on the pyrolysis of amino acids and their homopolymers and discuss implications of their thermal behavior for extraterrestrial delivery.  相似文献   

15.
At 4.56 Ga, the accretion of the slowly rotating Solar Nebula led to the formation of Sun and its Planets in the plane of disc of accretion. Moon was formed by accretion from a circumterrestrial disk of debris generated by the glancing angle impact of the young Earth by a Mars size planetary embryo at about 4.5 Ga at a distance of 15,000 km. The Moon since then has migrated to the present position of 384,400 km from the center of the Earth. In course of this outward migration it has slowed down the spin rate of Earth and caused the lengthening of diurnal day length from 5 h initially to 24 h presently. The basic mechanics of Earth–Moon System has been worked out and theoretical determination of lengthening of day curve is carried out. This theoretical lengthening of day curve is compared with the observed lengthening of day curve based on paleobotanical evidences, ancient tidalites and Australian Banded Iron Formation. There is a remarkable correspondence between the two curves except for intermittent deviations due to geographical and geophysical factors. Based on the theoretical curve of lengthening of day, an empirical formula for the lunar orbital radius expansion is determined. Based on this empirical formula, simulation software is developed that gives the correct evolution of the semi-major axis (a) of our Moon for any time span from the inception to the time chosen under study. For mathematical simplicity the system is considered to be a two body rotating system throughout its evolutionary history of 4.5 Gyrs. This simulation draws the Moon’s spiral trajectory from its inception to any subsequent epoch. The terminal epoch is an input to the simulation software to arrive at the spiral trajectory of the Moon from the inception to the given epoch. The basic mechanics of Earth–Moon System and this simulation can be generalized to lay the foundation of simulation software for any Planet–Satellite pair or any Sun-Planet pair in our Solar System or Star-Planet pair in any Extra-Solar System. The basic dynamics has been found to be valid for Star–Planet pair also. So this Simulation Methodology can as well be applied to study the migratory evolution of Gas Giants also.  相似文献   

16.
Recent developments of millimeter astronomy have led to the discovery of more and more complex molecules in the interstellar medium. In a similar way, attempts have been made to detect complex molecules in the atmospheres of the most primitive bodies of the Solar System, i.e. outer planets and comets, as well as in Titan's atmosphere. An important progress has been achieved thanks to the continuous development of infrared astronomy, from the ground and from space vehicles. In particular, an important contribution has come from the IRIS-Voyager infrared spectrometer with the detection of prebiotic molecules on Titan, and some complex organic molecules on Jupiter and Saturn. Another important result has been the observation of carbonaceous material in the immediate surroundings of Comet Halley's nucleus. In the near future, the search for organic molecules in the outer Solar System should benefit from the developments of large millimeter antennae, and in the next decade, from the operation of infrared Earth-orbiting spacecrafts (ISO, SIRTF).  相似文献   

17.
We review recent experimental studies concerning the evolution, driven by ion irradiation, of carbonaceous material from frozen gas to a refractory molecular solid. Under further irradiation the latter changes to a polymer-like material and ultimately to amorphous carbon. Most of the results have been obtained by "in situ" and remote IR and Raman spectroscopy. The results have been applied to demonstrate that molecular solids may be easily formed by irradiation of frozen mantles in dense interstellar clouds. Polymer-like material and amorphous carbons may result by further irradiation of organic mantles on grains in the diffuse interstellar medium. Those grains, during the aggregation to form extended bodies like comets (T-Tau phase of the Sun), are further modified. These latter are also irradiated, after the comet formation, during their long stay in the Oort cloud. In particular it has been suggested that comet may develop an ion-produced cometary organic crust that laboratory evidences show to be stable against temperature increases experienced during passages near the Sun. The comparison between the Raman spectra of some IDP (Interplanetary Dust Particles) and the Raman spectra of some ion-produced amorphous carbons, is also discussed.  相似文献   

18.
Aqueous solutions of 5-substituted hydantoins were irradiated with ultraviolet (UV) light, to investigate their structural stability against UV radiation as well as the possible photolysis products. The photolysis products were identified and the degree of photolysis was measured using reversed-phase and ion-exchange high-performance liquid chromatography. Hydantoin (2,4-imidazolidinedione) was dominantly detected as a photolysis product of 5-substituted hydantoins. With hydrolysis of UV-irradiated 5-substituted hydantoins, glycine and alanine were dominantly detected. These experimental results are important for the prebiotic photochemistry of 5-substituted hydantoins in the formation of hydantoin since they have been detected in Solar System materials.  相似文献   

19.
The reductive perturbation method is applied to investigate the dust acoustic soliton in dusty plasmas with streaming ions under ultraviolet irradiation theoretically and numerically. The self-consistent dust charge variation is taken into account. It is shown that the ultraviolet irradiation can significantly lower the magnitude of the dust negative charge, and ion streaming velocity firstly raise the magnitude of the dust negative charge and then lower it. With the growth of (Ultraviolet) UV photo flux or ion streaming velocity, the phase velocity and width of the solitary waves decrease, whereas its amplitude increases.   相似文献   

20.
Comets and life.     
Some of the chemical species which have been detected in comets include H2O, HCN, CH3CN, CO, CO2, NH3, CS, C2 and C3. All of these have also been detected in the interstellar medium, indicating a probable relationship between interstellar dust and gas clouds and comets. Laboratory experiments carried out with different mixtures of these molecules give rise to the formation of the biochemical compounds which are necessary for life, such as amino acids, purines, pyrimidines, monosaccharides, etc. However, in spite of suggestions to the contrary, the presence of life in comets is unlikely. On the other hand, the capture of cometary matter by the primitive Earth is considered essential for the development of life on this planet. The amount of cometary carbon-containing matter captured by the Earth, as calculated by different authors, is several times larger than the total amount of organic matter present in the biosphere (10(18)g). The major classes of reactions which were probably involved in the formation of key biochemical compounds are discussed. Our tentative conclusions are that: 1) comets played a predominant role in the emergence of life on our planet, and 2) they are the cosmic connection with extraterrestrial life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号