首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The paper analyses first the satellite growth trend in the past and the specific characteristics of communication satellites, as there are specific mass per channel and payload share vs. spacecraft mass.

With assistance of a cost model (derived from actual spacecraft cost) it is shown that larger satellites are more cost effective. The same applies to the launch cost, also showing a reduction in specific cost (per kg or per channel-year) for larger payloads.

Finally different types of communication satellites/platforms are compared (two smaller satellites, one large satellite, modular docked assemblies) for the same total communication capacity of 72 000 dual telephone channels. It is shown that for each orbital communication capacity a certain optimum spacecraft size exists which leads to minimum space segment cost.  相似文献   


2.
为提高核动力航天器关键技术的可继承性与可扩展性,缩短核动力航天器研发周期,降低研发成本,本文通过总结国外核动力航天器发展现状,梳理核动力航天器研制特点,结合模块化航天器概念及设计原则,首次提出模块化核动力航天器概念。将核动力航天器分为核电源模块、平台中心模块、载荷模块3大独立模块,并针对体系架构设计提出3层建设方案,针对模块化核动力航天器梳理关键技术难点,为后续项目研究提供应用参考。  相似文献   

3.
首先,界定了所讨论的航天器电子系统的范畴,即限于航天器平台或公共服务模块部分的电子设备。然后,从分布式模块化结构电子系统发展、工业标准体系的应用、空间电子单机与元器件先进制造技术影响和数字化设备应用等方面,综述了国外航天器电子系统技术十余年的发展成果和趋势,其中重视系统体系结构研究、工业标准向空间技术领域推广等经验值得借鉴。  相似文献   

4.
《Acta Astronautica》2014,93(1):321-332
With an increase in the use of small, modular, resource-limited satellites for Earth orbiting applications, the benefit to be had from a model-based architecture that rapidly searches the mission trade-space and identifies near-optimal designs is greater than ever. This work presents an architecture that identifies trends between conflicting objectives (e.g. lifecycle cost and performance) and decision variables (e.g. orbit altitude and inclination) such that informed assessment can be made as to which design/s to take on for further analysis. The models within the architecture exploit analytic methods where possible, in order avoid computationally expensive numerical propagation, and achieve rapid convergence. Two mission cases are studied; the first is an Earth observation satellite and presents a trade-off between ground sample distance and revisit time over a ground target, given altitude as the decision variable. The second is a satellite with a generic scientific payload and shows a more involved trade-off, between data return to a ground station and cost of the mission, given variations in the orbit altitude, inclination and ground station latitude. Results of each case are presented graphically and it is clear that non-intuitive results are captured that would typically be missed using traditional, point-design methods, where only discrete scenarios are examined.  相似文献   

5.
Technology advances in sensor, digital technology and a standardised modular satellite bus are enabling a new generation of 80 kg micro-satellites with a better than 6.5 m GSD multi-spectral performance, to be specified, built and deployed with a dedicated launch within 12 months. The result of the standardised modular bus is lower cost, higher reliability and fast deployment. Operational remote sensing with a micro-satellite is thus within reach of individual organisations for dedicated missions. Sumbandilasat (pioneer in the Venda language) is a second generation satellite technology building on the expertise obtained in the Sunsat small satellite programme. The components used to build Sumbandilasat are the result of a technology development program of more than 3 years. Sumbandilasat is an operational technology demonstrator with more than 90% newly developed or improved subsystems and a compact refractive imager as a precursor to the MSMISat satellite with the same multi-spectral band set. The scalable, standardised modular satellite bus architecture enables satellites with a mass of 80–450 kg to be adapted to the specific mission requirements with minimum new engineering effort.  相似文献   

6.
Since September 2001, NASA's In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. Recently completed is the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Two other cost saving technologies nearing completion are the NEXT ion thruster and the Aerocapture technology project. Under development are several technologies for low-cost sample return missions. These include a low-cost Hall-effect thruster (HIVHAC) which will be completed in 2011, light-weight propellant tanks, and a Multi-Mission Earth Entry Vehicle (MMEEV). This paper will discuss the status of the technology development, the cost savings or performance benefits, and applicability of these in-space propulsion technologies to NASA's future Discovery, and New Frontiers missions, as well as their relevance for sample return missions.  相似文献   

7.
This article uses the context of the Earth Observing System (EOS) to address two sets of economic and policy issues that have been fundamental to the rancorous debate over EOS, and which promise to figure prominently in future discussion of other US space activities. The first set of issues concerns whether the purported cost savings from larger-scale spacecraft and multiple-sensor coordination are substantial enough to justify large-scale approaches, and the differences in the risk associated with the large-scale projects compared to smaller-scale alternatives. The second set of issues concerns the institutional organization of projects, namely whether a project's technology should be an almost exclusively governmentally funded, owned and operated activity as is now the case, or whether there could be a larger role than now envisaged for the commercial space sector.  相似文献   

8.
The high cost of launching payloads into Earth orbit is a main limiting factor on the development of space. In order to reduce the high cost of launch, reuse of (parts of) the launch vehicle is needed. This study analyses the possibilities of recovering and reusing the core stage of Ariane 5. Recovery of the core stage sets demands on re-entry trajectory, attitude, stability, thermal protection, structural strength, terminal deceleration, salt water protection, recovery and refurbishment. All these subject areas require solutions to their individual problems. Added subsystems to the stage are defined and their mass is determined. These masses are used to determine the financial feasibility of the recovery concept, by weighing the payload demise and operational cost against the gains of reduced production cost. It is concluded that the recovery is technologically feasible, using a detachable ablative heat shield on the nose of the stage and a stabilisation device (an inflatable drag cone), a parachute system and an engine enclosure device. Total mass of these systems is 1320 kg, with financial savings amounting to $8.5 million per flight.  相似文献   

9.
《Acta Astronautica》1987,15(9):703-706
The Mir station of new generation, that was inserted into the orbit on February 20, 1986, went through its systems check during the automatic and man-controlled modes of flight and entered into a new operation phase being permanently manned.The concept of modular space station with six docking units makes it possible to perform docking with manned spacecraft, cargo vehicles and specialized scientific modules, to increase its functional capabilities and to transform the station into a multipurpose permanent orbital complex. Technical capabilities for performing a wide range of experiments, including joint projects for international cooperation program are extended. The main principles that are realized in the new Mir station, as well as scientific problems that are solved during the station operation, are considered in the article.  相似文献   

10.
The Radar SAIL concept is based on the use of a rectangular antenna lying in the dawn-dusk orbital plane with the length (along speed vector) smaller than the height. Such geometry makes it possible to place the solar cells on the back of the antenna, to use gravity gradient stabilisation, and to implement multipath-free GPS interferometric measurement of the antenna deformation thus allowing structural relaxation. Less obviously, the geometry favours the RADAR design too, by allowing grating lobes and therefore a lower density of built-in electronic in the active antenna. The antenna can be thin and packed for launch inside a cylinder-shaped bus having pyrotechnic doors for the antenna deployement and bearing the rest of the payload and the service equipment. With respect to a standard design of performant missions, cost savings come from the bus, whose functions (AOCS, power supply) are simplified, from the launch since the mass budget and the stowing configuration become compatible with medium size rockets (LLV2/3, DELTA-LITE, LM-4.), and from the active antenna built-in electronics.

The RADAR SAIL concept is all the more cost effective when the mission requires a large, high and short antenna, i.e. high resolution (<5m), low frequency band (L or S or even P), high revisiting, multiple frequencies. Mission implementation and funding can be favored by the new capability to share the satellite between autonomous regional operators. Combined with ground DBF (digital beam forming) technique, the concept allows extremely simple and low cost missions providing a fixed wide swath (10 to 15 m resolution within 500km to 1000 km swath) for systematic surveillance or monitoring.  相似文献   


11.
Recent studies have shown the feasibility of an Earth pole-sitter mission using low-thrust propulsion. This mission concept involves a spacecraft following the Earth's polar axis to have a continuous, hemispherical view of one of the Earth's poles. Such a view will enhance future Earth observation and telecommunications for high latitude and polar regions. To assess the accessibility of the pole-sitter orbit, this paper investigates optimum Earth pole-sitter transfers employing low-thrust propulsion. A launch from low Earth orbit (LEO) by a Soyuz Fregat upper stage is assumed after which solar electric propulsion is used to transfer the spacecraft to the pole-sitter orbit. The objective is to minimize the mass in LEO for a given spacecraft mass to be inserted into the pole-sitter orbit. The results are compared with a ballistic transfer that exploits manifold-like trajectories that wind onto the pole-sitter orbit. It is shown that, with respect to the ballistic case, low-thrust propulsion can achieve significant mass savings in excess of 200 kg for a pole-sitter spacecraft of 1000 kg upon insertion. To finally obtain a full low-thrust transfer from LEO up to the pole-sitter orbit, the Fregat launch is replaced by a low-thrust, minimum time spiral, which provides further mass savings, but at the cost of an increased time of flight.  相似文献   

12.
为降低全生命周期成本,提高航天运载器综合竞争力,提出了基于综合电子方案的某型运载器电气系统设计实现方法。首先对该运载器功能需求进行了分析,建立了基于综合电子的系统分布式集成逻辑架构,然后分别就系统任务规划与操作系统分区结构、基于时间触发以太网(TTE)的一体化机内外总线体制以及系统容错处理机制等关键技术及实现途径开展了分析论证。本方案提出的相关软、硬件设计方法有利于实现系统快速集成与系统内资源共享,同时为实现冗余容错控制、在线任务规划等功能提供了便利。  相似文献   

13.
This paper deals with ongoing research work concerning energy budget and cost of the solar Satellite Power System (SPS).The fundamental model of such a total system including ground and space facilities, transportation vehicles, power satellites and rectennas is presented. The main purpose of this model is to examine the applicability of different construction scenarios to allow comparison under nearly identical constraints.Using this model in a first attempt the blankets—meaning the main part of the space segment by weight, energy investment needs and cost—are chosen representatively for the energy and cost comparison of two construction alternatives of the same SPS concept. These construction alternatives are defined just by ground and space based manufacturing of the solar blankets, while all other subsystems, operations and the transportation profiles are considered to be kept the same.It can be shown that the energy “payback” time does not only depend on the SPS concept selected but also very much on the construction and implementation scenario. The cost comparison of these alternative approaches presents not very significant differences but advantages for the space manufacturing option with potential higher differences for a less conservative approach which may apply benefits of space manufacturing meaning, for example, considerable mass savings in space.Some preliminary results are discussed and an outlook is given over the next steps to be investigated, comprising the extension of the fundamental model to include use of lunar raw materials.  相似文献   

14.
The paper comprises an assessment of the design and the economics of so-called “low-cost” simple modular launch vehicles. It is shown that the performance is very marginal and that the cost per launch cannot compete with technically more advanced fully reusable vehicles. Especially a private-funded development cannot be amortized economically in case of an expendable launch vehicle.  相似文献   

15.
Differently from traditional integration satellites, the modular satellites consist of several structurally independent modules and the heat dissipation is unevenly distributed, while the interface between modules should support repeatable connection separating. Therefore, the traditional thermal control design, which supports the independent heat dissipation of an integration satellite, cannot meet the thermal control requirements of the modular satellite. In this paper the modular thermal control technology is proposed. The carbon nanotube array on metal substrate is used as the thermal interface of the modules to realize the separable cross module heat transfer. The internal surface of structural panels is coated by graphene film to enhance the internal heat transfer in the modules with limited internal space. The smart thermal control coating is used at all the heat rejection surfaces to suppress the orbital heat flux variations. By using the technology, the thermal connection of the assembly and reconstruction system is built and the synergistic heat dissipation of the whole satellite is achieved. As to validate the proposed technology, the finite element model of the circular low earth orbit satellite is established and the in orbit temperature in the extreme working conditions is simulated. The result indicates that the modular thermal control technology proposed in this paper can satisfy the thermal control demand of the modular satellite.   相似文献   

16.
即插即用模块化卫星体系结构研究   总被引:3,自引:1,他引:2  
即插即用模块化卫星是模块化即插即用技术与卫星平台技术相结合的新型卫星系统,是实现空间快速响应的重要途径。文章介绍了即插即用模块化卫星的概念;分析了即插即用技术在航天任务中的应用;概括了即插即用模块化卫星的体系结构,主要包括功能模块、即插即用标准接口、卫星平台总线和系统软件。在传统卫星分系统划分的基础上进行功能分解,提出了即插即用模块化卫星功能模块的划分方案。文章的研究结果可为中国发展即插即用模块化卫星技术提供理论参考。  相似文献   

17.
Over the past several years Satellites International has developed an integrated suite of satellite sub-systems and small satellite buses. The sub-systems include S-band communications, attitude sensing and control, power conversion and distribution, and on-board data handling. They are inherently modular and readily adaptable to different satellite configurations, a concept known as semi-standardisation. This concept has been adopted by two generic low-cost buses: MicroSIL for satellites in the mass range 40–80kg; and MiniSIL for satellites in the range 100–500kg. Their architecture is based on the semi-standard sub-systems, but easily modified to utilise sub-systems from other manufacturers. They can support all stabilisation methods including spinning, 3-axis control and gravity gradient and are adaptable to a wide variety of missions including Earth resources, scientific, communications and technology demonstration. The Company also manufactures a range of low cost ground support equipment and complete ground stations to complement the space-borne systems.  相似文献   

18.
模块化航天器是未来航天器发展的重要方向,模块航天器之间的能量传输是实现模块化功能应用的关键技术。文章针对模块化航天器系统能量分配需求,对无线激光能量传输技术进行了研究。阐述了无线激光能量传输系统的功能组成,建立了系统框架模型,分析了系统的关键技术,并对系统各组成模块进行了初步设计。在此基础上对激光传能系统进行了试验验证,获得了理想的光电转换效率。文章的研究成果可为我国模块航天器的发展提供技术支持。  相似文献   

19.
空间太阳电池阵的发展现状及趋势   总被引:6,自引:2,他引:6  
从四方面分析了空间太阳电池阵的发展现状,包括体装式、带桨展开式、单板展开式、多板展开式、柔性多模块多维展开式等总体构型的发展历程,常用太阳电池片如硅电池片、砷化镓电池片、柔性薄膜电池片的材料与性能的发展现状,刚性基板结构、半刚性基板结构、柔性基板结构的发展与应用及五种展开机构的特点与空间应用分析,论述了空间太阳电池阵发展的制约因素,指出了聚光型柔性太阳电池阵是未来空间太阳电池阵发展的趋势,旨在促进空间太阳电池阵向着大尺寸、大功率、模块化、低成本和轻质量的方向发展,以适应大功率航天器的发展需求。  相似文献   

20.
针对航天伺服系统现有设计过程中因设计参数耦合因素考虑不全导致系统性能难以进一步提高的问题,提出了一套模块化航天机电伺服系统多学科集成设计与优化方法。从产品层、部件层和零件层对系统进行了模块化划分,给出了模块化设计流程及V字数据传递路线,以具体工程实例验证了模块化集成设计与优化方法的高效性及提升航天伺服系统总体设计水平的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号