首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
激光熔化沉积快速成形TA15钛合金的力学性能   总被引:3,自引:0,他引:3  
激光熔化沉积(LMD)快速成形技术,利用快速原型制造(RPM)技术在无需任何模具和工装条件下快速制造任意复杂形状零件的全数字化快速制造基本原理,以新材料快速凝固激光冶金制备技术为手段,通过金属材料的激光逐层熔化沉积,直接由零件CAD模型一步完成高性能"近终形"复杂金属零件的快速成形制造。  相似文献   

2.
快速原型制造技术变革了传统的体积成形与去除成形的加工方式,是一种材料累加制造法,可从三维数模直接制造出任意复杂的零件,适合加工形状复杂的难成形/难加工材料和生产批量小、科技附加值高、具有特殊要求的航空航天零件。  相似文献   

3.
在高能束直接制造高致密金属零件技术中,有支撑的EBM技术在高形状复杂度的小型零件制造方面具有优势,但难以制造大型、复合功能梯度材料的零件;无支撑的LENS技术与HPDM技术在制造高功能复杂度、大中型金属零件方面独具优势,但尚未有效解决带悬臂等的复杂形状零件无支撑直接成形过程中的流淌和开裂问题,根本解决此瓶颈问题、提高其复杂形状成形度,是扩大该技术应用范围的迫切需求。  相似文献   

4.
金属零件激光快速成形研究涉及粉体材料制备与表征、激光工艺控制与优化、成形零件结构设计与优化以及激光冶金物理化学理论,是激光技术、材料科学与工程、机械工程、冶金工程等多学科交叉与融合,因此是一个富有开放性和挑战性的研究领域。目前,对于金属零件选区激光熔化快速成形的材料、工艺及理论的研究,尚有很多方面未获得本质突破。对于该领域诸多新材料、新工艺、新现象及新理论的深入研究与发掘,是实现激光快速成形技术走向工程应用的基础。  相似文献   

5.
高性能大型金属构件激光增材制造:若干材料基础问题   总被引:15,自引:6,他引:9  
简要介绍了高性能大型金属构件激光增材制造的技术特点、国内外研究进展及技术发展面临的挑战,分析了大型金属构件激光增材制造的"高性能材料制备"与"复杂结构直接制造"有机融合、"控形/控性"一体化的独特特征。指出高性能大型关键金属构件激光增材制造技术的发展和工程应用,将在很大程度上取决于人们对激光增材制造过程中对激光/金属交互作用行为及能量吸收利用机制、内部冶金缺陷形成机制及力学行为、移动熔池约束快速凝固行为及构件晶粒形态演化规律、非稳态循环固态相变行为及显微组织形成规律、内应力演化规律及构件变形开裂预防方法等材料基础问题的深入研究。  相似文献   

6.
<正>增量制造技术变革了传统的机械加工减量成形和锻造等量成形模式,为制造难加工复杂高性能零件提供了新的思路。现有高能三束(激光、电子束、等离子束)金属零件自由增材制造技术存在成形效率不高、成本高、成形精度及性能可靠性不足的瓶颈问题。要克服上述技术瓶颈,既保持增量制造技术优势,又吸收传统技术优点,需要研究探索新的复合制造新技术。  相似文献   

7.
激光直接制造技术及其在飞机上的应用   总被引:1,自引:0,他引:1  
激光直接制造具有无模具、短周期、低成本及高品质等特点,能够解决钛合金传统加工存在的问题,实现复杂构件的直接近净成形,同时激光快速熔凝特点使零件具有致密的组织和良好的综合性能,从而可以更大限度地发掘材料性能潜力.  相似文献   

8.
激光快速成形飞机金属零件   总被引:1,自引:0,他引:1  
激光快速成形技术是近几年国际上广泛关注的一种先进实体自由成形技术,利用该技术能够实现高性能致密金属零件的直接成形,具有无模具、短周期、低成本、市场响应快等特点。这些特点为先进飞机和高推比发动机中关键零件的研制及生产开辟了一条快速、经济、高效、高质量的途径。介绍了激光快速成形技术的基本原理及特点,概括了该技术在国内外的发展现状以及在航空领域的应用情况,分析了该技术实际应用过程存在的问题。  相似文献   

9.
金属零件激光增材制造技术的发展及应用   总被引:5,自引:0,他引:5  
激光选区熔化技术与选择性激光烧结技术的不同之处在于后者粉末材料往往是一种金属材料与另一种低熔点材料的混合物,成形过程中,仅低熔点材料熔化或部分熔化把金属材料包覆粘结在一起,其原型表面粗糙、内部疏松多孔、力学性能差,需要经过高温重熔或渗金属填补空隙等后处理才能使用;而前者利用高亮度激光直接熔化金属粉末材料,无需粘结剂,由3D模型直接成形出与锻件性能相当的任意复杂结构零件,其零件仅需表面光整即可使用。  相似文献   

10.
激光增材制造技术的研究现状及发展趋势   总被引:6,自引:0,他引:6  
增材制造技术能够快速将复杂结构的三维数据模型直接转化为实体零部件,是一种快速发展的数字化制造技术.激光增材制造技术是增材制造技术中最具代表性的一类,在增材制造技术领域扮演着重要的角色.主要介绍了两种典型的激光增材制造技术:激光选区熔化(Selective Laser Melting,SLM)技术和激光金属直接成形(Laser Metal Direct Forming,LMDF)技术的原理与特点,归纳了其发展和研究现状,指出了激光增材制造技术的发展趋势.  相似文献   

11.
激光快速成形技术突破了传统的材料变形成形和去除成形工艺方法的许多限制,基于增材制造的原理,迅速制造出形状复杂的三维实体模型,可直接对难加工材料进行成形。  相似文献   

12.
激光工程化净成形同轴送粉的研究   总被引:1,自引:0,他引:1  
激光工程化净成形技术是近年来在传统快速成形技术基础上引入激光熔覆技术而创造的一种新的快速成形技术。与选择性激光烧结工艺不同,激光工程化净成形工艺不需要浸渗、热等静压等复杂后处理工序即可快速获得致密度和强度均较高的金属功能零件。介绍激光工程化净成形工艺系统的组成,着重介绍同轴送粉器的组成和工作原理,试验分析粉末流量与步进电机转速之间的关系。  相似文献   

13.
金属构件选区激光熔化成形技术   总被引:6,自引:2,他引:6  
金属构件由粉末直接成形是快速成形技术的发展方向.现阶段已有的金属粉末直接快速成形技术主要有选区激光烧结、激光熔覆和选区激光熔化的3种工艺.前两种方法不能直接制造出可直接使用的达到一定尺寸精度和表面粗糙度要求的金属构件.选区激光熔化方法利用直径30~50μm的聚焦激光束,把金属或合金粉末选区逐层熔化,堆积成一个冶金结合、组织致密的实体.其外形不需进一步加工,经抛光或简单表面处理就可直接作模具或工件使用.本文对现阶段国内外快速成形金属零件的主要的3种工艺方法进行简要评述,着重介绍选区激光熔化技术的设备和工艺的研究现状和发展前景.  相似文献   

14.
激光增材制造技术可以实现超高强度钢大型复杂关键重载构件的高性能精确成形,同时还可用于损伤零件的快速修复,在航空航天等领域的应用日益广泛.介绍了激光增材制造低合金超高强度钢的成形特性,评述了激光增材制造过程中热累积对低合金超高强度钢显微组织的影响规律,探讨了显微组织和热处理对激光增材制造低合金超高强度钢力学性能的作用机理...  相似文献   

15.
快速成形制造(RPM)技术自20世纪80年代问世以来,一直保持着迅速发展的势头,进入21世纪,其发展更加为人们所重视,并被称为快速制造(Rapid Manufacturing,RM)技术。利用快速成形制造的方法直接制造三维金属零件是当前国际快速原型技术研究的热点之一,其研究的目标是生产制造小批量且具有复杂形状和较高使用性能的功能零部件。  相似文献   

16.
快速成形技术(Rapid Prototyping,RP)已经成为先进制造技术领域的一个重要里程碑,它集成了CAD技术、数控技术、激光技术和材料技术等。与传统的去材料成形技术相比,快速成形从零件的CAD三维几何模型出发,通过软件分层和数控成形系统,用激光束或者其他方法将材料堆积形成实体零件。快速成形技术能快速响应市场需求,满足个性化、多样化产品需求,已广泛应用于机械、电子、航空航天等各个领域。  相似文献   

17.
王华明 《航空学报》2002,23(5):473-478
 简要报道本实验室目前在先进航空金属材料激光表面改性及高性能金属零件激光快速成形技术研究与应用的新进展。主要内容包括 :(1 )钛合金耐磨阻燃激光表面合金化与激光熔覆表面改性技术;(2 )刷式密封及指尖密封跑道高温自润滑耐磨涂层新材料及其激光熔覆制备新技术;(3 )难熔金属硅化物复合材料高温耐磨耐蚀多功能涂层新材料及激光熔覆涂层技术;(4 )高性能 /梯度性能钛合金及高温合金结构件激光快速成形技术。  相似文献   

18.
提出一种基于光固化成型技术的复杂航空零件快速制造方法。根据零件结构设计模具,采用光固化成形技术制造压蜡模具型壳,填充金属树脂复合材料,经过固化、去应力等工序实现压蜡模具制造;并基于蜡模制造复杂AISI316L航空零件。该制造方法周期短、精度高、成本低,能够快速响应市场的需求。  相似文献   

19.
高温镍基合金在高温高压条件下具有高强度、优异的抗疲劳性能与蠕变特性,是航空航天领域中重要的高温合金材料之一。综述了基于粉末床激光熔化成形技术进行镍基高温合金零件快速制造的国内外研究进展,首先系统地介绍了成熟应用于金属3D打印技术和正处于研究开发中的高温镍基合金材料,接着总结了经SLM成形后高温镍基合金材料的微观组织结构与缺陷,以及相应热处理后零件的组织变化和力学性能特征。最后,进一步概述了SLM成形高温镍基合金零件热点科学问题。  相似文献   

20.
激光制造技术在航空领域中的应用   总被引:2,自引:0,他引:2  
自上世纪70年代大功率激光器件诞生以来,已形成了激光焊接、激光切割、激光打孔、激光表面处理、激光合金化、激光熔覆、激光快速原型制造、金属零件激光直接成形、激光刻槽、激光标记、激光掺杂等十几种应用工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号