首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
王健  汪友梅  刘忠茂 《推进技术》2020,41(3):715-720
为研究磁屏蔽对霍尔推进器磁场位形分布的影响,以轴对称环形霍尔推进器为研究对象,采用FEMM软件对各种磁屏蔽情况下的磁场分布进行仿真;结合流体模型,利用四阶龙格库塔方法对放电通道内各粒子的输运性质进行研究。结果表明:内外磁屏蔽材料高度变化时磁场位形存在最优分布;电子温度在放电通道出口附近达到最大值,约64eV。离子化频率和电子轴向有效散射频率峰值也出现在通道出口附近。  相似文献   

2.
磁场位形和通道尺度会改变霍尔推力器等离子体放电过程,影响推力器的宏观放电特性。为分析磁场和通道宽度对推力器放电性能的影响规律,本文针对霍尔推力器轴对称通道结构和放电物理过程建立2D3V物理模型,采用粒子模拟方法研究了霍尔推力器磁零点磁场位形不同通道宽度的电势、粒子数密度、电子温度、电离速率、比冲及推功比的变化规律,结果表明:在具有磁零点磁场位形下,随着通道宽度增加,通道出口处电势降增加,加速区缩短,离子径向速度减少,壁面腐蚀降低;当磁零点位置在内壁面,推力器通道宽度由14 mm增加到16 mm时,推力器比冲和推功比增大,推力器放电效率提高;当磁零点位置在通道中轴线或外壁面,且通道宽度大于14 mm时,推力器比冲增大,推功比减小,推力器效率下降。  相似文献   

3.
磁场强度及位形对霍尔推力器放电过程有显著影响。根据霍尔推力器通道尺寸和等离子体放电过程建立二维物理模型,采用粒子模拟方法,研究了不同磁场强度及位形等离子体放电特性,讨论了推力、推功比及放电电流的变化规律。模拟表明:当中轴线磁场强度峰值小于200G时,磁场对电子轴向传导约束减弱;当磁场强度峰值在200G~420G时,电子温度、电离率及电子与壁面碰撞频率降低,出口处离子径向速度增大,壁面腐蚀增加;当磁场强度峰值为280G时,加速区最短,放电电流最小。不同零磁点磁场位形会改变通道电离区和加速区位置,影响推力器放电性能。  相似文献   

4.
以研究氪气替代氙气作为霍尔推力器工质时,等离子体束发散程度大等束聚焦特性问题为目的,通过以霍尔推力器磁场参数、放电电压和阳极工质流量分别作为单一变量进行实验研究,考察其对推力器等离子体束聚焦影响情况。使用HET-P70霍尔推力器进行相关实验,通过改变磁场参数来研究磁场位形对氪气工质推力器性能的影响,最终发现合适磁场位形形成的磁聚焦状态,即实验一中的工况3,可以使羽流发散角达到11.5°,此时推力器放电电压在400V,阳极工质流量3mg/s。另外,通过实验二和实验三,考察阳极工质流量和放电电压对氪等离子体束聚焦的影响机理,发现两个放电参数的变化主要改变了中性气体主电离区位置,进而影响等离子体束聚焦状态。电离位置在设定工况下外移9%,会使得羽流发散半角增大约12°。所以,磁场位形和中性气体的电离位置是影响氪等离子体束聚焦的重要因素,在对氪气霍尔推力器进行设计优化时应予重点考虑。  相似文献   

5.
磁极腐蚀问题成为磁屏蔽霍尔推力器的主要寿命失效模式。为了研究磁极腐蚀的机理,本文基于粒子网格方法建立推力器放电的数值仿真模型,结合溅射模型模拟磁极腐蚀现象,统计磁极表面收集的入射离子运动状态,获取磁极腐蚀特性,据此探究磁极腐蚀的机理以及影响磁极腐蚀速率的因素。结果表明:磁屏蔽霍尔推力器出口倒角附近形成的高原子密度区同时也是径向电场占主导的区域,在此处电离产生的低速离子易于径向发散进而偏转向磁极方向运动。磁极表面腐蚀现象呈现径向分布不均的特点,内磁极附近轴对称电场对离子的作用是导致磁极中心腐蚀速率远高于其他位置的主要原因。  相似文献   

6.
韩轲  汪颖  鲁海峰 《推进技术》2020,41(6):1434-1440
基于霍尔推力器一维准中性流体模型,对放电壁面侵蚀对低频振荡特性的影响进行了数值模拟研究。通过改变霍尔推力器放电通道的横截面积,研究了霍尔推力器寿命期内通道受离子溅射后,放电电流振荡特性变化。研究结果显示,横截面积从25cm2增大到37cm2时,放电电流振荡幅值增加,振荡频率基本不变;继续增加横截面积,放电电流振荡幅值减小,振荡频率增加。理论分析表明:通道侵蚀面积增大,导致离子碰撞频率变化,进而引起振荡特性变化。  相似文献   

7.
为了提出降低阳极层霍尔推进器运行过程中的磁极刻蚀程度的方案,记录磁极刻蚀程度在相关参数影响下的变化,针对阳极层霍尔推进器的放电电流、电压、工质输送速率等工作参数开展实验研究,定量分析了这些影响因子对推进器磁极刻蚀程度的影响。通过测量磁极被溅射出的粒子在样品表面不同位置上的沉积速率,计算出了推进器在不同运行条件下,由于磁极刻蚀而产生的溅射粒子数量和密度。实验结果表明,该推进器在运行过程中,溅射粒子主要集中在羽流中心线附近区域;随着放电电压和电流的增加,溅射粒子的密度显著上升,并且在以羽流中心线为中心,半径为4cm的圆面区域内,溅射粒子密度上升明显;降低工质输送速率,在低气压、高电压和小电流的运行条件下能够有效降低推进器磁极刻蚀程度,实验所采用的霍尔推进器合适的工作气压为0.02~0.025Pa。  相似文献   

8.
为有效利用从P70霍尔推力器放电通道进入缓冲腔的快电子能量,考虑两个磁场特征以提高缓冲腔预电离率。一是提高磁感应强度,二是缓冲腔内从气体分配器到放电通道方向的负梯度。采用FEMM有限元磁场计算软件,在不改变推力器电离和加速通道内优化磁场特征的前提下,设计的新型缓冲腔磁路满足上述磁场特征。放电实验结果表明,在新型缓冲腔磁路下放电电流低频振荡幅值更小。新型磁路有助于延长推力器寿命,有助于电离和加速通道内电离与加速区的分离。  相似文献   

9.
卢昕  王宣  汤海滨  章喆  康小录 《推进技术》2018,39(6):1426-1433
霍尔推力器的束流特性能够体现推力器的工作状态,为了了解额定功率1350W的Hall Effect Thruster-80(HET-80)霍尔推力器在700W功率下的工作状态,研究设计了一套等离子体诊断系统,包括了法拉第探针、平面型Langmuir单探针、阻滞能量分析仪(RPA)和发射光谱,对HET-80霍尔推力器在700W功率下的束流特性进行了诊断实验。实验结果显示:700W功率工况下HET-80霍尔推力器束流发散半角为45°,整体呈现出纺锤形分布,束流中心区域的离子电流密度分布呈现出圆环型霍尔推力器典型的双峰结构;由于等离子体的复合碰撞导致离子量变少,实验中法拉第探针测量得到的积分电流随着轴向距离增加而减小;在束流区边缘发生了较多的CEX碰撞,使该区域电子温度骤升;中心区离子能量接近247e V,相较于推力器放电电压310V,评估霍尔推力器加速效率达79.6%,加速效率较好,整体束流结果表明HET-80霍尔推力器在700W功率工况下表现正常。实验中发现法拉第探针结合RPA测量出来的离子数密度较Langmuir探针测量出的离子数密度更为准确;由于霍尔推力器只有一个空心阴极,发射光谱得到的出口附近电子温度和离子原子相对浓度分布均为空间非均匀状态。  相似文献   

10.
李鸿  吴优  张兴浩  韩亮  于达仁 《推进技术》2018,39(1):231-240
为研究磁路高温性质变化对霍尔推力器放电热失稳的贡献及影响机理,对不同磁路温度下推力器的工作磁场强度开展了实验测量,对磁路温度变化与通道内等离子体放电行为变化的交互影响开展了Particle-in-Cell数值模拟研究。实验结果表明,当磁路温度由室温升高到600℃时,推力器的工作磁场强度发生了衰减,尽管衰减量不大(约5%)。模拟结果表明,磁路高温引起的场强衰减改变了推力器放电时的电导率及电势分布,进而对电子能量各向分布、粒子密度分布等造成了影响,促进了电子在壁面的通量及能量损失,主导了壁面等离子体沉积功率的增加,从而进一步加剧了磁路温度的增长。这是一个具有正反馈性质的过程;因此,若不能通过外部手段有效控制磁路温度,将诱发霍尔推力器的放电热失稳。  相似文献   

11.
核磁共振陀螺代表了新一代高精度、微小型陀螺的发展方向之一,随着陀螺体积的降低,磁屏蔽层与磁场线圈随之减小,且二者贴合更加紧密,高导磁性的磁屏蔽层及低导磁性的空气介质交错分布,改变了线圈的磁通路径,导致线圈的磁场均匀性下降,制约了陀螺精度的提高。针对这一问题,提出了磁场等效增益系数,模拟磁屏蔽边界对线圈磁场的影响,据此建立了磁屏蔽边界条件下高均匀磁场线圈模型,优化了线圈参数。对所设计线圈的磁场均匀性进行了测试,表明该设计方法可以得到磁屏蔽边界条件下高均匀磁场线圈,可为发展微小型、高精度的核磁共振陀螺高均匀磁场线圈设计方法提供参考。  相似文献   

12.
LIPS-200环型会切磁场离子推力器热模型计算分析   总被引:5,自引:5,他引:0       下载免费PDF全文
为了建立国内自行研制的20cm口径LIPS-200环型会切磁场离子推力器放电室的热模型,研究了放电室内等离子体的产生过程,得到了二次电子的温度、离子密度以及电子密度分布规律,在此基础上得到放电室各个关键部件的电流沉积和能量沉积热模型。以热模型计算结果为依据,进行了推力器稳态工作下的有限元热分析以及热平衡验证试验。结果显示:推力器处于稳定放电时,放电室内电子温度分布范围为2~4e V;电离基本发生在放电室轴线附近,此处电离产生率和电子温度最高,并且整个放电室内离子密度约为1017/m3;放电室的内表面能量沉积主要来自二次电子及Xe离子。  相似文献   

13.
为深入分析霍尔推力器放电通道的非麦氏电子分布对等离子体与壁面相互作用的影响,采用一维非稳态鞘层动力学模型,统计了等离子体与壁面相互作用的重要物理量。结果表明,非麦氏电子分布函数和麦氏电子分布函数下等离子体与壁面相互作用存在很大差异,电子服从非麦氏电子分布时入射电子在壁面上的能量沉积,以及二次电子对主流区电子的冷却作用都明显弱于电子服从麦氏分布的情形。  相似文献   

14.
近零磁工作环境是实现无自旋交换弛豫(SERF)原子自旋惯性测量装置的必要条件,但在实际中由于装置内部气室加热和环境温度变化引起的磁屏蔽性能变化是影响系统性能的一个主要因素.基于热-磁耦合理论建立了惯性测量装置的有限元分析模型,对加热条件下磁屏蔽筒内磁场均匀性及其剩余磁场进行了分析.结果表明,气室加热至200℃时,附近温...  相似文献   

15.
圆柱形阳极层霍尔推力器内轮辐效应的实验研究   总被引:2,自引:2,他引:0       下载免费PDF全文
《推进技术》2019,40(7):1676-1680
为了研究圆柱形阳极层霍尔推力器内关于电子反常输运的轮辐效应(Rotating Spoke),分别采用高速相机和静电探针来捕捉圆柱形阳极层霍尔推力器内的轮辐效应图像和等离子体震荡频率。结果表明:在放电电压350V,放电电流3.5A,阳极上表面处的磁场强度为125Gs,工作气压为2×10-2Pa时,由测得轮辐效应的放电图像和波形可知,轮辐效应的频率为10kHz~12.5kHz。当磁场强度增加到205Gs,放电电流增加到4A时,轮辐效应的频率增加到25kHz,并且轮辐效应出现分裂和合并现象。此研究结果表明,圆柱形阳极层霍尔推力器内不仅存在轮辐效应现象以及角向电场,而且不同的工作参数会有不同的轮辐效应模式和频率。  相似文献   

16.
梁雪  杨涓  王雲民 《推进技术》2014,35(2):276-281
为了研究电子回旋共振中和器内静磁场和微波电磁场的分布规律,设计合理的磁路结构以形成电子回旋共振区,并使微波强电场区与电子回旋共振区重合,采用有限元分析软件对中和器内的静磁场和微波电磁场进行了数值计算。计算结果表明:永磁体及磁轭的尺寸均影响电子回旋共振区的分布;天线伸入长度越长,微波电场越强。微波频率为4.2GHz时,六块相同的长12mm,宽8mm,高5mm的条形永磁铁与磁轭组成的磁路结构,可以产生合理的电子回旋共振区。L型天线伸入长度为5mm时微波强电场区可与电子回旋共振区重合。  相似文献   

17.
量子惯性仪表是利用光场和磁场等手段操控原子、电子等微观粒子实现载体运动信息测量的新型惯性设备,量子惯性仪表对外界磁场的大小、稳定性和均匀性等提出了很高的要求,需要高性能的磁屏蔽技术与之相匹配。回顾了目前常用的磁屏蔽方式,针对最常用的被动型磁屏蔽所涉及的材料铁镍合金、非晶合金和软磁铁氧体等进行了梳理和总结,阐述了上述三种材料的优缺点以及适用范围,并展望了量子惯性仪表用磁屏蔽材料的发展趋势。  相似文献   

18.
为了研究重粒子碰撞对霍尔推力器通道等离子体影响,采用PIC/MCC/DSMC混合法对放电通道工作过程进行数值仿真研究。建立放电通道二维数值仿真模型,模型中对重粒子碰撞进行重点考虑。估算了通道内各粒子碰撞下的平均自由程,并针对重粒子碰撞单一变量开展了2个仿真模型计算,并对结果进行了对比分析及验证。结果表明:重粒子碰撞对通道内离子数密度分布影响较大,主要表现为离子数密度分布在电离区更为均匀,离子数密度峰值下降6.9%;离子轴向速度影响较小,出口处离子轴向平均速度下降1.3%。与实验结果对比验证,重粒子碰撞因素使仿真结果与测试值之间误差由9.0%缩小到7.3%。  相似文献   

19.
磁场对高电压霍尔推力器性能影响研究   总被引:2,自引:2,他引:0       下载免费PDF全文
为研究磁场构型、磁场强度对高电压霍尔推力器主要性能的影响机理,以HET-200推力器为对象,采用固定磁场构型和不固定磁场构型两种方案进行实验研究。结果表明,在不固定构型的情况下增强磁场,放电电流存在两个极小值,效率也存在相应的两个极大值;但当固定磁场构型时,则放电电流只有一个最小值,效率也只有一个最大值。以最优效率下的磁场构型为基准,获得了磁场与电压、磁场与流量的匹配关系分别为B_(r, max)∝V~(0.7),B_(r, max)∝m。  相似文献   

20.
光纤陀螺处于磁场环境中会产生漂移,降低了光纤陀螺精度。光纤陀螺的磁场敏感性制约了其在高精度导航领域的应用。本文建立了光纤陀螺三维磁屏蔽仿真模型,给出了光纤陀螺磁屏蔽效能与磁屏蔽结构参数之间的关系并得到实验验证,为光纤陀螺磁屏蔽设计提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号