首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beginning with the derivation of a least squares estimator that yields an estimate of the acceleration input vector, this paper first develops a detector for sensing target maneuvers and then develops the combination of the estimator, detector, and a "simple" Kalman filter to form a tracker for maneuvering targets. Finally, some simulation results are presented. A relationship between the actual residuals, assuming target maneuvers, and the theoretical residuals of the "simple" Kalman filter that assumes no maneuvers, is first formulated. The estimator then computes a constant acceleration input vector that best fits that relationship. The result is a least squares estimator of the input vector which can be used to update the "simple" Kalman filter. Since typical targets spend considerable periods of time in the constant course and speed mode, a detector is used to guard against automatic updating of the "simple" Kalman filter. A maneuver is declared, and updating performed, only if the norm of the estimated input vector exceeds a threshold. The tracking sclheme is easy to implement and its capability is illustrated in three tracking examples.  相似文献   

2.
The existing algorithms for the design of digital filters with colored measurement noise involve a restriction on the dimension of the measurement error model. Kalman filter equations and state space partition are used to formulate an optimal tracking filter without such restrictions. The input to the new filter are two consecutive measurements, and it is initialized by using the first available measurements and the error model correlation matrix. Several examples illustrate the filter formulation and initialization.  相似文献   

3.
An analysis is described of a kinematic state vector fusion algorithm when tracks are obtained from dissimilar sensors. For the sake of simplicity, it is assumed that two dissimilar sensors are equipped with nonidentical two-dimensional optimal linear Kalman filters. It is shown that the performance of such a track-to-track fusion algorithm can be improved if the cross-correlation matrix between candidate tracks is positive. This cross-correlation is introduced by noise associated with target maneuver that is common to the tracking filters in both sensors and is often neglected. An expression for the steady state cross-correlation matrix in closed form is derived and conditions for positivity of the cross-correlation matrix are obtained. The effect of positivity on performance of kinematic track-to-track fusion is also discussed  相似文献   

4.
目标跟踪是机载广播式自动相关监视(ADS-B)应用的基础功能,对提升航空器周边的弱机动民航飞机目标跟踪性能具有重要意义。提出一种基于交互式多模型卡尔曼滤波(IMMKF)算法的ADS-B 监视应用目标跟踪方法。首先,针对弱机动背景下的民航飞机的飞行特点,建立包含匀速模型和标准协同转弯模型的运动模型集,并对模型进行线性化近似;然后,将模型预测和ADS-B 状态矢量量测数据作为IMMKF 算法中多个并行卡尔曼滤波器的输入,进行并行滤波;最后,计算得到目标状态矢量的估计和模型近似概率,并作为下一次迭代的输入。结果表明:相比于基于匀速模型的卡尔曼滤波目标跟踪方法,IMMKF 方法的位置跟踪误差降低了59%,速度跟踪误差降低了77%,显著提升了状态估计性能,具备较高的跟踪精度、稳健性与计算效率,在ADS-B 监视应用中具有实际应用价值与借鉴意义。  相似文献   

5.
An analysis is conducted of the optimality of a decoupled tracking filtering algorithm for addressing the problem of tracking multiple targets with correlated measurements and maneuvers. It is proved that the decoupled filters are, in general, suboptimal and are not in fact Kalman filters. However, it is shown also that if the standard Kalman filter is asymptotically stable, the decoupled filters will converge asymptotically to the stable version of the standard Kalman filter. For the case of time-invariant measurement and process noise covariance, a simple sufficient condition guaranteeing the asymptotical stability of the decoupled filters are given  相似文献   

6.
The state-space modeling of partially observed dynamical systems generally requires estimates of unknown parameters. The dynamic state vector together with the static parameter vector can be considered as an augmented state vector. Classical filtering methods, such as the extended Kalman filter (EKF) and the bootstrap particle filter (PF), fail to estimate the augmented state vector. For these classical filters to handle the augmented state vector, a dynamic noise term should be artificially added to the parameter components or to the deterministic component of the dynamical system. However, this approach degrades the estimation performance of the filters. We propose a variant of the PF based on convolution kernel approximation techniques. This approach is tested on a simulated case study.  相似文献   

7.
The dominant factor in determining the computation time of the Kalman filter is the dimension n of the model state vector. The number of computations per iteration is on the order of n3. Any reduction in the number of states will benefit directly in terms of increased computation time. In this paper, a high order model in integrated GPS/INS is described first, then a reduced-order model based on the high-order model, is developed. Finally, a faster tracking approach for Kalman filters is discussed. A typical aircraft trajectory is designed for a complex high-dynamic aircraft flight experiment. A Monte Carlo analysis shows that the reduced order model presented in this paper provides satisfactory accuracy for aircraft navigation  相似文献   

8.
Two novel automatic frequency tracking loops   总被引:3,自引:0,他引:3  
Two automatic-frequency-control loops are introduced and analyzed in detail. The algorithms are generalizations of the well-known cross-product automatic-frequency-control loop with improved performance. The first estimator uses running overlapping discrete Fourier transforms (DFTs) to create a discriminator curve proportional to the frequency estimation error, whereas the second one preprocesses the received data and then uses an extended Kalman filter to estimate the input frequency. The algorithms are tested by computer simulations in a low carrier-to-noise-ratio (CNR) and highly dynamic environment. The algorithms are suboptimum tracking schemes with a larger frequency error variance compared to an optimum strategy, but they offer simplicity of mechanization and a CNR with a very low operating threshold  相似文献   

9.
Smoothing as a way to improve the carrier phase estimation is proposed and analyzed. The performance of first-and second-order Kalman optimum smoothers are investigated. This perfomance is evaluated in terms of steady-state covariance error computation, dynamic tracking, and noise response. It is shown that with practical amounts of memory, a second-order smoother can have a position error due to an acceleration or jerk step input less than any prescribed maximum. As an example of importance to the NASA deep space network (DSN), a second-order smoother can be used to track the Voyager spacecraft at Uranus and Neptune encounters with significantly better performance than a second-order phaselocked loop.  相似文献   

10.
The problem of parallel implementation of the square-root Kalman filters is addressed. At the system level, our approach is to apply systolic-type VLSI processor arrays as basic building blocks to accelerate the matrix operations required in each iteration. To maximize the parallelism, we also exploit an inter-array pipelining scheme through the overlapping of execution between successive processor arrays. We estimate that with (5n2 + r2 + 8nr + n + 3r)/2 processors, it would take max[(4n + 2r, 2n + 4r-2)] time units to complete one Kalman filter iteration, where n is the dimension of the underlying state space model and r is the dimension of the input vector.  相似文献   

11.
Consideration is given to the design and application of a recursive algorithm to a sequence of images of a moving object to estimate both its structure and kinematics. The object is assumed to be rigid, and its motion is assumed to be smooth in the sense that it can be modeled by retaining an arbitrary number of terms in the appropriate Taylor series expansions. Translational motion involves a standard rectilinear model, while rotational motion is described with quaternions. Neglected terms of the Taylor series are modeled as process noise. A state-space model is constructed, incorporating both kinematic and structural states, and recursive techniques are used to estimate the state vector as a function of time. A set of object match points is assumed to be available. The problem is formulated as a parameter estimation and tracking problem which can use an arbitrarily large number of images in a sequence. The recursive estimation is done using an iterated extended Kalman filter (IEKF), initialized with the output of a batch algorithm run on the first few frames. Approximate Cramer-Rao lower bounds on the error covariance of the batch estimate are used as the initial state estimate error covariance of the IEKF. The performance of the recursive estimator is illustrated using both real and synthetic image sequences  相似文献   

12.
A general method of continually restructuring an optimum Bayes-Kalman tracking filter is proposed by conceptualizing a growing tree of filters to maintain optimality on a target exhibiting maneuver variables. This tree concept is then constrained from growth by quantizing the continuously sensed maneuver variables and restricting these to a small value from which an average maneuver is calculated. Kalman filters are calculated and carried in parallel for each quantized variable. This constrained tree of several parallel Kalman filters demands only modest om; puter time, yet provides very good performance. This concept is implemented for a Doppler tracking system and the performance is compared to an extended Kalman filter. Simulation results are presented which show dramatic tracking improvement when using the adaptive tracking filter.  相似文献   

13.
Two maneuvering-target tracking techniques are compared. The first, called input estimation, models the maneuver as constant unknown input, estimates its magnitude and onset time, and then corrects the state estimate accordingly. The second models the maneuver as a switching of the target state model, where the various state models can be of different dimension and driven by process noises of different intensities, and estimates the state according to the interacting multiple model (IMM) algorithm. While the first requires around twenty parallel filters, it is shown that the latter, implemented in the form of the IMM, performs equally well or better with two or three filters  相似文献   

14.
An alternate set of equations is given for the exact computation of the Kalman gains under the conditions of no maneuvering input noise and measurements in position and velocity. They are simpler than the standard recursive equations, and are useful in applications where implementation of the standard Kalman filter is not possible due to real-time restrictions. When there is maneuvering input noise, the same gains can still approximate the optimal gains with a very minor degradation in performance, even when some parameters, for example the measurement interval, change during a track. Simulation studies have indicated that there is negligible performance degradation with this method of gain approximation  相似文献   

15.
Linear Kalman filters, using fewer states than required to completely specify target maneuvers, are commonly used to track maneuvering targets. Such reduced state Kalman filters have also been used as component filters of interacting multiple model (IMM) estimators. These reduced state Kalman filters rely on white plant noise to compensate for not knowing the maneuver - they are not necessarily optimal reduced state estimators nor are they necessarily consistent. To be consistent, the state estimation and innovation covariances must include the actual errors during a maneuver. Blair and Bar-Shalom have shown an example where a linear Kalman filter used as an inconsistent reduced state estimator paradoxically yields worse errors with multisensor tracking than with single sensor tracking. We provide examples showing multiple facets of Kalman filter and IMM inconsistency when tracking maneuvering targets with single and multiple sensors. An optimal reduced state estimator derived in previous work resolves the consistency issues of linear Kalman filters and IMM estimators.  相似文献   

16.
Kalman filtering with state equality constraints   总被引:5,自引:0,他引:5  
Kalman filters are commonly used to estimate the states of a dynamic system. However, in the application of Kalman filters there is often known model or signal information that is either ignored or dealt with heuristically. For instance, constraints on state values (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. A rigorous analytic method of incorporating state equality constraints in the Kalman filter is developed. The constraints may be time varying. At each time step the unconstrained Kalman filter solution is projected onto the state constraint surface. This significantly improves the prediction accuracy of the filter. The use of this algorithm is demonstrated on a simple nonlinear vehicle tracking problem  相似文献   

17.
应用卡尔曼滤波的机载雷达跟踪系统   总被引:1,自引:0,他引:1  
毛士艺 《航空学报》1983,4(1):62-72
本文论述将滤波理论应用于机载雷达中对单个目标进行距离、速度、方位角和高低角跟踪的多环反馈系统。首先根据目标和天线的相对运动建立控制四坐标跟踪环所需的状态矢量微分方程,然后推导相应的非线性滤波算法。最后给出计算机的模拟结果。计算机模拟的结果清晰地说明采用最佳滤波的系统性能比通常的有很大改善,并且这种瞄准轴坐标系的最佳系统对目标的随机机动是不灵敏的。 本文所讨论的方法和得出的结论可以延用到地面雷达、舰载雷达以及其他有源和无源的跟踪系统。  相似文献   

18.
The noise performance analysis of a nonuniform digital phase-locked loop (DPLL), called the digital tanlock loop (DTL), is investigated by both analytic and computer-simulation methods. The results are presented in terms of phase error probability mass function and mean time to skip cycle versus input signal-to-noise ratio (SNR). These results are compared to the ones obtained with the conventional sinusoidal DPLL loop (DPLL). It is found that, for low-to-moderate input SNR, the DTL has only a slight improvement over the DPLL. The DTL, however, has larger linear characteristics than the conventional DPLL, which makes it attractive for applications that require an increased tracking range or as a first stage in carrier tracking systems based on optimum estimation procedures such as a Kalman smoother  相似文献   

19.
Aircraft targets normally maneuver on circular paths, which has led to tracking filters based on circular turns. A coordinate system to track circular maneuvers with a simple Kalman filter is introduced. This system is a polar coordinate system located at the center of the maneuver. It leads to a tracking filter with range, angle, and angular velocity in the state vector. Simulation results are presented, showing that the algorithm displays improved performance over methods based on constant x-y acceleration when tracking circular turns  相似文献   

20.
针对基于磁强计测量的微小卫星, 提出了基于串并联混合策略的轨道姿态 耦合确定方法。滤波初期,考虑到估计误差较大,采用先地磁场大小测量的轨道确定、 后地磁场矢量测量的姿态确定的串联策略;稳定后,采用基于矢量测量的轨道、姿态同 步确定的并联策略。为降低轨道、姿态确定的相互影响,设计了基于信息的鲁棒Kalman 滤波,通过自动调节增益矩阵处理两个滤波系统间的影响。仿真表明,该方法在提高鲁 棒性的同时,还能适当提高状态估计的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号