首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
As a consequence of the stratospheric ozone layer depletion biological systems can be damaged due to increased UV-B radiation. The aim of biological dosimetry is to establish a quantitative basis for the risk assessment of the biosphere. DNA is the most important target molecule of biological systems having special sensitivity against short wavelength components of the environmental radiation. Biological dosimeters are usually simple organisms, or components of them, modeling the cellular DNA. Phage T7 and polycrystalline uracil biological dosimeters have been developed and used in our laboratory for monitoring the environmental radiation in different radiation conditions (from the polar to equatorial regions). Comparisons with Robertson-Berger (RB) meter data, as well as with model calculation data weighted by the corresponding spectral sensitivities of the dosimeters are presented. Suggestion is given how to determine the trend of the increase in the biological risk due to ozone depletion.  相似文献   

2.
Biological monitoring of radiation exposure.   总被引:2,自引:0,他引:2  
Complementary to physical dosimetry, biological dosimetry systems have been developed and applied which weight the different components of environmental radiation according to their biological efficacy. They generally give a record of the accumulated exposure of individuals with high sensitivity and specificity for the toxic agent under consideration. Basically three different types of biological detecting/ monitoring systems are available: (i) intrinsic biological dosimeters that record the individual radiation exposure (humans, plants, animals) in measurable units. For monitoring ionizing radiation exposure, in situ biomarkers for genetic (e.g. chromosomal aberrations in human lymphocytes, germ line minisatellite mutation rates) or metabolic changes in serum, plasma and blood (e.g. serum lipids, lipoproteins, lipid peroxides, melatonin, antibody titer) have been used. (ii) Extrinsic biological dosimeters/indicators that record the accumulated dose in biological model systems. Their application includes long-term monitoring of changes in environmental UV radiation and its biological implications as well as dosimetry of personal UV exposure. (iii) Biological detectors/biosensors for genotoxic substances and agents such as bacterial assays (e.g. Ames test, SOS-type test) that are highly sensitive to genotoxins with high specificity. They may be applicable for different aspects in environmental monitoring including the International Space Station.  相似文献   

3.
Biological UV (ultraviolet) dosimetry was applied using the biofilm-technique (DLR patent) to determine the UV levels weighted of biologically weighted UV radiation at the INTA Sounding Station of El Arenosillo at Huelva, Spain (37 degrees 06'N, 6 degrees 44'W, 50 m a s 1=above sea level) on 2 days in 1997 [correction of 1977] (April 1, and May 5). Exposure periods were calculated for clear sky days using a radiative transfer model for erythemal doses to reach 1.3 to 1.5 MED (minimal erythemal dose). Reliability of the radiative transfer model was demonstrated by the doses registered by a Yankee-UV biometer for the same exposure periods as used for the biosensor. This work presents the methodology employed (biofilm-technique utilized [correction of utiliced], calculation of exposing periods with radiative transfer model, etc) and the results obtained with the Yankee biometer and the biofilm. At noon, the ratio of biofilm measurements (Ieff, W/m2=biological effective irradiance, in W/m2) to the UV Biometer data (in MED/h) was 3-4.  相似文献   

4.
The vitamin D synthesis in the human skin, is absolutely dependent on UVB radiation. Natural UVB from sunlight is normally absent in the closed environment of a space station like MIR. Therefore it was necessary to investigate the UV radiation climate inside the station resulting from different lamps as well as from occasional solar irradiation behind a UV-transparent quartz window. Biofilms, biologically weighting and integrating UV dosimeters successfully applied on Earth (e.g. in Antarctica) and in space (D-2, Biopan I) were used to determine the biological effectiveness of the UV radiation climate at different locations in the space station. Biofilms were also used to determine the personal UV dose of an individual cosmonaut. These UV data were correlated with the concentration of vitamin D in the cosmonaut's blood and the dietary vitamin D intake. The results showed that the UV radiation climate inside the Mir station is not sufficient for an adequate supply of vitamin D, which should therefore be secured either by vitamin D supplementat and/or by the regular exposure to special UV lamps like those in sun-beds. The use of natural solar UV radiation through the quartz window for ‘sunbathing’ is dangerous and should be avoided even for short exposure periods.  相似文献   

5.
There have been significant, recent advances in understanding the solar ultraviolet (UV) and X-ray spectral irradiance from several different satellite missions and from new efforts in modeling the variations of the solar spectral irradiance. The recent satellite missions with solar UV and X-ray spectral irradiance observations include the X-ray Sensor (XRS) aboard the series of NOAA GOES spacecraft, the Upper Atmosphere Research Satellite (UARS), the SOHO Solar EUV Monitor (SEM), the Solar XUV Photometers (SXP) on the Student Nitric Oxide Explorer (SNOE), the Solar EUV Experiment (SEE) aboard the Thermosphere, Ionosphere, Mesosphere, Dynamics, and Energetics (TIMED) satellite, and the Solar Radiation and Climate Experiment (SORCE) satellite. The combination of these measurements is providing new results on the variability of the solar ultraviolet irradiance throughout the ultraviolet range shortward of 200 nm and over a wide range of time scales ranging from years to seconds. The solar UV variations of flares are especially important for space weather applications and upper atmosphere research, and the period of intense solar storms in October–November 2003 has provided a wealth of new information about solar flares. The new efforts in modeling these solar UV spectral irradiance variations range from simple empirical models that use solar proxies to more complicated physics-based models that use emission measure techniques. These new models provide better understanding and insight into why the solar UV irradiance varies, and they can be used at times when solar observations are not available for atmospheric studies.  相似文献   

6.
For interpretation of results obtained in future biological experiments in the International Space Station (ISS), biologically equivalent doses have to be determined using small-scale detectors without disturbing the surrounding radiation field. The detectors should be lightweight, stable, safe, and simple in handling. Solid-state integrating detectors (SSID) can satisfy these requirements. This paper demonstrates that combination of SSID such as thermoluminescence dosimeters and radiophotoluminescence glasses can be practically used for the evaluation of biologically equivalent doses. Statistical errors (type-A uncertainty) of this method will be satisfactorily small relative to those generally observed in biological responses. Permissible levels of systematic errors (type-B uncertainty) depend on dosimetry purposes (most-probable or conventional) and variability of biological responses.  相似文献   

7.
Biological dosimetry has provided experimental proof of the high sensitivity of the biologically effective UVB doses to changes in atmospheric ozone and has thereby confirmed the predictions from model calculations. The biological UV dosimeter 'biofilm' whose sensitivity is based on dried spores of B. subtilis as UV target weights the incident UV radiation according to its DNA damaging potential. Biofilm dosimetry was applicated in space experiments as well as in use in remote areas on Earth. Examples are long-term UV measurements in Antarctica, measurements of diurnal UV profiles parallel in time at different locations in Europe, continuous UV measurements in the frame of the German UV measurement network and personal UV dosimetry. In space biofilms were used to determine the biological efficiency of the extraterrestrial solar UV, to simulate the effects of decreasing ozone concentrations and to determine the interaction of UVB and vitamin D production of cosmonauts in the MIR station.  相似文献   

8.
The present measurement accuracy of the solar spectral irradiance is insufficient to derive the real long-term solar spectral irradiance variability at all wavelengths. Possible error sources are discussed. A series of new second generation solar irradiance photometers are now under construction which should considerably improve these measurements. At the same time, efforts are made to improve the absolute UV calibration methods to derive a unified UV radiation scale.  相似文献   

9.
The ultraviolet (UV) environment of Mars has been investigated to gain an understanding of the variation of exposure throughout a Martian year, and link this flux to biological effects and possible survival of organisms at the Martian surface. To gain an idea of how the solar UV radiation varies between different regions, including planned landing sites of two future Mars surface missions, we modelled the total solar UV surface flux throughout one Martian year for two different dust scenarios. To understand the degree of solar UV stress on micro-organisms and/or molecules essential for life on the surface of Mars, we also calculated the biologically effective dose (BED) for T7 and Uracil in relevant wavelength regions at the Martian surface as a function of season and latitude, and discuss the biological survival rates in the presence of Martian solar UV radiation. High T7/Uracil BED ratios indicate that even at high latitudes where the UV flux is significantly reduced, the radiation environment is still hostile for life due to the persisting UV-C component of the flux.  相似文献   

10.
All radiations originate in space, and the spectrum of radiations reaching the troposphere is limited only because of their range and absorption by the ozone layer above the atmosphere. Ultraviolet-C and the very heavy ions are therefore produced on earth only artificially, by special lamps and in accelerators. The range of biological effects of the different UV radiations and low and high LET radiations have been studied extensively, yet only recently new facts such as the production of DNA strand breaks by long wave UV light were established, adding to the various points of encounter existing between ionizing and nonionizing radiations. There are some similarities in radiation products, and the resulting effects of insult by radiation on biological systems very often are similar, if not the same. A common phenomenon that exists in all healthy biological cells is the ability to repair damage to DNA and thus either survive or mutate, and although the specific mechanisms of repair are somewhat different, the end result is the same. Recently a mechanism of improved radioprotection was found to involve an effect of certain radioprotective compounds on DNA repair. It is suggested that improved, and nontoxic, modes of protection may be offered by employing such compounds as biological response modifiers and natural substances. Further research is needed and is under way.  相似文献   

11.
Total solar and UV irradiances have been measured from various space platforms for more than two decades. More recently, observations of the “Variability of solar IRradiance and Gravity Oscillations” (VIRGO) experiment on SOHO provided information about spectral irradiance variations in the near-UV at 402 nm, visible at 500 nm, and near-IR at 862 nm. Analyses based on these space-borne irradiance measurements have convinced the skeptics that solar irradiance at various wavelengths and in the entire spectrum is changing with the waxing and waning solar activity. The main goal of this paper is to review the short- and long-term variations in total solar and spectral irradiances and their relation to the evolution of magnetic fields from solar cycles 21 to 23.  相似文献   

12.
After spending nearly six years in Earth orbit twenty stacks consisting of radiation detectors and biological objects are now back on Earth. These stacks (Experiment A0015 Free Flyer Biostack) are part of the fifty seven science and technology experiments of the Long Duration Exposure Facility (LDEF) of NASA. The major objectives of the Free Flyer Biostack experiments are to investigate the biological effectiveness of single heavy ions of the cosmic radiation in various biological systems and to provide information about the spectral composition of the radiation field and the total dose received in the LDEF orbit. The Biostacks are mounted in two different locations of the LDEF. Up to three layers of Lithium fluoride thermoluminescence dosimeters (TLD) of different isotopic composition were located at different depths of some Biostacks. The preliminary analysis of the TLD yields maximum absorbed dose rates of 2.24 mGy day-1 behind 0.7 g cm-2 shielding and 1.17 mGy day-1 behind 12 g cm-2 shielding. A thermal neutron fluence of 1.7 n cm-2 s-1 is determined from the differences in absorbed dose for different isotopic mixtures of Lithium. The results of this experiment on LDEF are especially valuable and of high importance since LDEF stayed for about six years in the prospected orbit of the Space Station Freedom. There is no knowledge about the effectiveness of the space radiation in long-term spaceflights and the dosimetric data in this orbit are scarce.  相似文献   

13.
The variability of the solar UV irradiance has strong effects on the terrestrial atmosphere. In order to study the solar influence for times when no UV observations are available, it is necessary to reconstruct the variation of the UV irradiance with time on the basis of proxies. We present reconstructions of the solar UV irradiance based on the analysis of space-based and ground-based magnetograms of the solar disk going back to 1974. With COde for Solar Irradiance (COSI) we calculate solar intensity spectra for the quiet Sun and different active regions and combine them according to their fractional area on the solar disk, whereby their time-dependent contributions over the solar cycle lead to a variability in radiation. COSI calculates the continuum and line formation under conditions which are out of local thermodynamic equilibrium (non-LTE). The applied temperature and density structures include the chromosphere and transition region, which is particularly important for the UV. The reconstructions are compared with observations.  相似文献   

14.
The solar soft X-ray (XUV; 1–30 nm) radiation is highly variable on all time scales and strongly affects the ionosphere and upper atmosphere of Earth, Mars, as well as the atmospheres and surfaces of other planets and moons in the solar system; consequently, the solar XUV irradiance is important for atmospheric studies and for space weather applications. While there have been several recent measurements of the solar XUV irradiance, detailed understanding of the solar XUV irradiance, especially its variability during flares, has been hampered by the lack of high spectral resolution measurements in this wavelength range. The conversion of the XUV photometer signal into irradiance requires the use of a solar spectral model, but there has not been direct validation of these spectral models for the XUV range. For example, the irradiance algorithm for the XUV Photometer System (XPS) measurements uses multiple CHIANTI spectral models, but validation has been limited to other solar broadband measurements or with comparisons of the atmospheric response to solar variations. A new rocket observation of the solar XUV irradiance with 0.1 nm resolution above 6 nm was obtained on 14 April 2008, and these new results provide a first direct validation of the spectral models used in the XPS data processing. The rocket observation indicates very large differences for the spectral model for many individual emission features, but the differences are significantly smaller at lower resolution, as expected since the spectral models are scaled to match the broadband measurements. While this rocket measurement can help improve a spectral model for quiet Sun conditions, many additional measurements over a wide range of solar activity are needed to fully address the spectral model variations. Such measurements are planned with a similar instrument included on NASA’s Solar Dynamics Observatory (SDO), whose launch is expected in 2009.  相似文献   

15.
The radiation sources used for plant growth on a space base must meet the biological requirements for photosynthesis and photomorphogenesis. In addition the sources must be energy and volume efficient, while maintaining the required irradiance levels, spectral, spatial and temporal distribution. These requirements are not easily met, but as the biological and mission requirements are better defined, then specific facility designs can begin to accommodate both the biological requirements and the physical limitations of a space based plant growth system.  相似文献   

16.
Radiation in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). The biological impact of space radiation to astronauts depends strongly on the particles’ linear energy transfer (LET) and is dominated by high LET radiation. It is important to measure the LET spectrum for the space radiation field and to investigate the influence of radiation on astronauts. At present, the preferred active dosimeters sensitive to all LET are the tissue equivalent proportional counter (TEPC) and the silicon detectors in various configurations; the preferred passive dosimeters are CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET and thermoluminescence dosimeters (TLDs) as well as optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET. The TEPC, CR-39 PNTDs, TLDs and OSLDs were used to investigate the radiation field for the ISS mission Expedition 13 (ISS-12S) in LEO. LET spectra and radiation quantities (fluence, absorbed dose, dose equivalent and quality factor) were measured for the space mission with different dosimeters. This paper introduces the role of high LET radiation in radiobiology, the operational principles for the different dosimeters, the LET spectrum method using CR-39 detectors, the method to combine the results measured with TLDs/OSLDs and CR-39 PNTDs, and presents the LET spectra and the radiation quantities measured and combined.  相似文献   

17.
This paper presents a new approach to forecasting short-term Lyα solar irradiance variations due to the presence and evolution of magnetically heated regions in the Sun’s outer atmosphere. This scheme is based on images of the solar disk at key wavelengths, currently Ca II K filtergrams, maps of backscattered solar Lyα from the interplanetary medium, and helioseismic images of large far-side active regions. The combination of these resources allows accurate forecasts of the UV solar irradiance several days in advance. The technique takes into consideration the evolution of recently observed activity on the Sun’s near surface as well as active regions on the Sun’s far side. The far-side helioseismic maps and the Lyα backscattering are very important, because of the long period of time features spend on the Sun’s far side compared with their typical evolution time and their relatively sudden appearance on the near side. We describe the basics of the forecasting technique and apply it to a case study that shows how the technique dramatically improves Lyα irradiance forecasting. An extension of the technique described here promises realistic forecasts of the entire FUV/EUV solar spectral irradiance spectrum.  相似文献   

18.
The intensity of continua and emission lines which form the solar UV spectrum below 2100 Å is variable. Continua and emission lines originating from different layers in the solar atmosphere show a different degree of variability. Coronal emission lines at short wavelengths are much more variable than continua at longer wavelengths which originate in lower layers of the solar atmosphere. Typical time-scales of solar UV variability are minutes (flare induced), days (birth of active regions), 27 days (solar rotation), 11 years (solar cycle) and perhaps centuries, caused by long-term changes of the solar activity. UV intensity variations have been determined by either absolute irradiance measurements or by contrast measurements of plages vs. the quiet sun. Plages are the main contributor to the solar UV variability. Typical values for the solar UV variability over a solar cycle are: <1% at wavelengths longer than 2100 Å, 8% at 2080 Å (continuum), 20% at 1900 Å (continuum), 70% at H Lyα, 200% in certain emission lines 1200 < λ < 1800 Å and more than a factor of 4 in coronal lines λ < 1000 Å. Plage models predict the variable component of the solar UV radiation within ±50%. Absolute fluxes are known within ±30%. Several efforts are underway to monitor the solar UV irradiance with a precision better than a few percent over a solar activity cycle.  相似文献   

19.
Measurements of solar irradiance have revealed variations at all the sampled time scales (ranging from minutes to the length of the solar cycle). One important task of models is to identify the causes of the observed (total and spectral) irradiance variations. Another major aim is to reconstruct irradiance over time scales longer than sampled by direct measurements in order to consider if and to what extent solar irradiance variations may be responsible for global climate change. Here, we describe recent efforts to model solar irradiance over the current and the previous two solar cycles. These irradiance models are remarkably successful in reproducing the observed total and spectral irradiance, although further improvements are still possible.  相似文献   

20.
Several important issues are open in the field of solar variability and they wait their solution which up to now was attempted using critical ground-based instrumentations. However, accurate photometric data are attainable only from space. New observational material should be collected with high enough spatial and spectral resolution, covering the whole visible range of the electromagnetic spectrum as well infrared and ultraviolet to reconstruct the total solar irradiance: (1) the absolute contributions of different small-scale structural entities of the solar atmosphere from the white light flares and from micro-flares are still poorly known; (2) we do not know the absolute contributions of different structural elements of the solar atmosphere to the long-term and to the cyclic variations of the solar irradiance, including features of the polar regions of the Sun; (3) the variations of the chromospheric magnetic network are still poorly evaluated; (4) only scarce information is available about the spectral variations of different small-scale features in the high photosphere. Variability of the Sun in white light can be studied with higher spectral, spatial and time resolution using space-born telescopes, which are more appropriate for this purpose than ground based observatories because of better seeing conditions, no interference of the terrestrial atmosphere and a more precise calibration procedure. Scientific requirements for such observations and the possible experimental tools proposed for their solution. Suggested solar studies have broader astrophysical importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号