首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Understanding solar influence on the Earth’s climate requires a reconstruction of solar irradiance for the pre-satellite period. Considerable advances have been made in modelling the irradiance variations at wavelengths longer than 200 nm. At shorter wavelengths, however, the LTE approximation usually taken in such models fails, which makes a reconstruction of the solar UV irradiance a rather intricate problem. We choose an alternative approach and use the observed SUSIM UV spectra to extrapolate available models to shorter wavelengths.  相似文献   

2.
The variability of the solar UV irradiance has strong effects on the terrestrial atmosphere. In order to study the solar influence for times when no UV observations are available, it is necessary to reconstruct the variation of the UV irradiance with time on the basis of proxies. We present reconstructions of the solar UV irradiance based on the analysis of space-based and ground-based magnetograms of the solar disk going back to 1974. With COde for Solar Irradiance (COSI) we calculate solar intensity spectra for the quiet Sun and different active regions and combine them according to their fractional area on the solar disk, whereby their time-dependent contributions over the solar cycle lead to a variability in radiation. COSI calculates the continuum and line formation under conditions which are out of local thermodynamic equilibrium (non-LTE). The applied temperature and density structures include the chromosphere and transition region, which is particularly important for the UV. The reconstructions are compared with observations.  相似文献   

3.
As a consequence of the stratospheric ozone layer depletion biological systems can be damaged due to increased UV-B radiation. The aim of biological dosimetry is to establish a quantitative basis for the risk assessment of the biosphere. DNA is the most important target molecule of biological systems having special sensitivity against short wavelength components of the environmental radiation. Biological dosimeters are usually simple organisms, or components of them, modeling the cellular DNA. Phage T7 and polycrystalline uracil biological dosimeters have been developed and used in our laboratory for monitoring the environmental radiation in different radiation conditions (from the polar to equatorial regions). Comparisons with Robertson-Berger (RB) meter data, as well as with model calculation data weighted by the corresponding spectral sensitivities of the dosimeters are presented. Suggestion is given how to determine the trend of the increase in the biological risk due to ozone depletion.  相似文献   

4.
Environmental UV radiation can be quantified using spore dosimetry, which measures the inactivation of repair-deficient Bacillus subtilis spores dried on a membrane filter. The system exhibits highly selective sensitivity to UV radiation, not being affected by various environmental adversities, such as high and low temperature and humidity. Biologically-effective dose rate and cumulative dose of ambient radiation are measurable under various conditions at various places on the earth, including tropical, temperate, and polar sites. Applications to monitor the exposure at the surface of organisms including humans and plants have also been advanced.  相似文献   

5.
We present an analysis of high resolution spectra in the far-UV – UV range (∼905–2000 Å) with non-LTE, spherical, hydrodynamical, line-blanketed models, of three O-type Galactic stars, and derive their photospheric and wind parameters. These data extend previously analyzed samples and fill a gap in spectral type coverage. The combined sample confirms a revised (downward) Teff scale with respect to canonical calibrations, as found in our previous works from UV and optical spectra, and in recent works by other authors.  相似文献   

6.
Separate controlled environment studies were conducted to determine the interaction of CO2 with irradiance and interaction of CO2 with temperature on growth of three potato cultivars. In the first study, an elevated CO2 concentration of 1000 micromoles mol-1 and an ambient CO2 of 350 micromoles mol-1 were maintained at the photosynthetic photon fluxes (PPF) of 17 and 34 mol m-2 d-1 with 12 h photoperiod, and at the PPF of 34 and 68 mol m-2 d-1 with 24 h photoperiod (400 and 800 micromoles m-2 s-1 PPF at each photoperiod). Tuber and total dry weights of 90-day old potatoes were significantly increased with CO2 enrichment, but the CO2 stimulation was less with higher PPF and longer photoperiod. Shoot dry weight was affected more by photoperiod than by PPF and CO2 concentrations. The elevated CO2 concentration increased leaf CO2 assimilation rates and decreased stomatal conductance with 12 h photoperiod, but had only a marginal effect with 24 h photoperiod. In the second study, four CO2 concentrations of 500, 1000, 1500 and 2000 micromoles mol-1 were combined with two air temperature regimes of 16 and 20 degrees C under a 12 h photoperiod. At harvest, 35 days after transplanting, tuber and total dry weights of potatoes reached a maximum with 1000 micromoles mol-1 CO2 at 16 degrees C, but continued to increase up to 2000 micromoles mol-1 CO2 at 20 degrees C. Plant growth was greater at 20 degrees C than at 16 degrees C under all CO2 concentrations. At 16 degrees C specific leaf weight increased substantially with increasing CO2 concentrations as compared to 500 micromoles mol-1 CO2, but increased only slightly at 20 degrees C. This suggests a carbohydrate build-up in the leaves at 16 degrees C temperature that reduces plant response to increased CO2 concentrations. The data in the two studies indicate that a PPF of 34 mol m-2 d-1, 20 degrees C temperature, and 1000-2000 micromoles mol-1 CO2 produces optimal tuber yield in potatoes.  相似文献   

7.
Polycrystalline uracil thin layers participate in the phage and uracil response (PUR) experiment, assigned to the biological dosimetry of the extraterrestrial solar radiation on the International Space Station (ISS). In ground based experiments (experiment verification tests), the following space parameters were simulated and studied: temperature, vacuum and short wavelength UV (UV-C, down to 200 nm) radiation. The closed uracil samples proved to be vacuum-tight for 7 days. In the tested temperature range (from -20 to +40 degrees C) the uracil samples are stable. The kinetic of dimer formation (dimerization) and reversion (monomerization) of uracil dimers due to short wavelength UV radiation was detected, the monomerization efficiency of the polychromatic deuterium lamp is higher than that of the germicidal lamp. A mathematical model describing the kinetic of monomerization-dimerization was constructed. Under the influence of UV radiation the dimerization-monomerization reactions occur simultaneously, thus the additivity law of the effect of the various wavelengths is not applicable.  相似文献   

8.
A CH4-N2-H2OV gas mixture was subjected to a high voltage (20 kV), high frequency (0.3 MHz) electric discharge. The energy input in the electric discharge was varied from 0.016 to 3.048 MJ mol-1. The chemical yields (G), expressed as the number of molecules formed or destroyed per 100 eV of energy input were calculated for several products. The G values calculated at the lowest energy input were (-CH4) = 6.48; (-N2) = 2.51; (C2H2) = 1.16; (HCN) = 0.215; (CH3CHO) = 0.115; (CH3CH2CHO) = 0.00161; (CH3(CH2)2CHO) = 0.0165; ((CH2CO2H)2) = 0.0000339; (CH4 --> Solid material) = 0.196; (N2 --> Solid material) = 0.00355. This is the first report in prebiotic studies in which the G values of various products in electric discharge experiments are determined. This type of study is needed in order to get a better insight into the relative role of electric discharges on the primitive Earth.  相似文献   

9.
We present a reconstruction of total solar irradiance since 1610 to the present based on variations of the surface distribution of the solar magnetic field. The latter is calculated from the historical record of the Group sunspot number using a simple but consistent physical model. Our model successfully reproduces three independent data sets: total solar irradiance measurements available since 1978, total photospheric magnetic flux from 1974 and the open magnetic flux since 1868 (as empirically reconstructed from the geomagnetic aa-index). The model predicts an increase in the total solar irradiance since the Maunder Minimum of about 1.3 Wm−2.  相似文献   

10.
Aquatic photosynthetic organisms are exposed to solar ultraviolet (UV) radiation while they harvest longer wavelength radiation for energetic reasons. Solar UV-B radiation (280-315 nm) affects motility and orientation in motile organisms and impairs photosynthesis in cyanobacteria, phytoplankton and macroalgae as measured by monitoring oxygen production or pulse amplitude modulated fluorescence analysis. Upon moderate UV stress most organisms respond by photoinhibition which is an active downregulation of the photosynthetic electron transport in photosystem II by degradation of UV-damaged D1 protein. Photoinhibition is readily reversible during recovery in shaded conditions. Excessive UV stress causes photodamage which is not easily reversible. Another major target is the DNA where UV-B mainly induces thymine dimers. Cyanobacteria, phytoplankton and macroalgae produce scytonemin, mycosporine-like amino acids and other UV-absorbing substances to protect themselves from short wavelength solar radiation.  相似文献   

11.
Plant-derived nutrients were successfully recycled in a Controlled Ecological Life Support System (CELSS) using biological methods. The majority of the essential nutrients were recovered by microbiologically treating the plant biomass in an aerobic bioreactor. Liquid effluent containing the nutrients was then returned to the biomass production component via a recirculating hydroponic system. Potato (Solanum tuberosum L.) cv. Norland plants were grown on those nutrients in either a batch production mode (same age plants on a nutrient solution) or a staggered production mode (4 different ages of plants on a nutrient solution). The study continued over a period of 418 days, within NASA Breadboard Project's Biomass Production Chamber at the Kennedy Space Center. During this period, four consecutive batch cycles (104-day harvests) and 13 consecutive staggered cycles (26-day harvests) were completed using reclaimed minerals and compared to plants grown with standard nutrient solutions. All nutrient solutions were continually recirculated during the entire 418 day study. In general, tuber yields with reclaimed minerals were within 10% of control solutions. Contaminants, such as sodium and recalcitrant organics tended to increase over time in solutions containing reclaimed minerals, however tuber composition was comparable to tubers grown in the control solutions.  相似文献   

12.
Nucleic acids (combined with protein molecules) are essential constituents of the living systems playing an important role in the early evolution of life as well. A specific feature of these molecules has been found and directly confirmed recently: under the influence of short-wavelength UV radiation bipyrimidine photoproducts (cyclobutane dimers and 6-4 bipyrimidines) are induced and the reversion of them can be provoked by the same photons. However, reversion is preferred by the shorter wavelengths. With increasing ratio of the longer wavelength components of the radiation (using artificial UV sources and solar light on the Earth's surface) the impact of the reversible photoproducts in the harmful biological effect decreases and other photoproducts are dominant. Assuming the photoinduced reactions (dimerisation and reversion) are statistical events, during the irradiation the chance for a number of nucleoprotein molecules to survive the radiation damage can be reality. The theoretical and experimental basis of these assumptions will be discussed in the case of bacteriophage T7 nucleoprotein.  相似文献   

13.
Experiments in growth chambers with controlled atmosphere were performed to compare the effects on the productivity of two treatments stimulating photosynthesis: the doubling of CO2 concentration, the doubling of irradiance; the combining of both was also tested. A large effect of light was noticed: (i) the accumulation of carbon was, contrarily to CO2 effect, amplified within time, and led to the most important dry matter production. (ii) the specific leaf weight was about two-fold increased. (iii) the nitrate content was 2-3 fold less. A significant positive effect of CO2 was detected on the fresh biomass production and the iron content of lettuce. A synergy was observed on dry matter production by the interaction of the two factors.  相似文献   

14.
The solar photon output from the Sun, which was once thought to be constant, varies considerably over time scales from seconds during solar flares to years due to the solar cycle. This is especially true in the wavelengths shorter than 190 nm. These variations cause significant deviations in the Earth and space environment on similar time scales, which then affects many things including satellite drag, radio communications, atmospheric densities and composition of particular atoms, molecules, and ions of Earth and other planets, as well as the accuracy in the Global Positioning System (GPS). The Flare Irradiance Spectral Model (FISM) is an empirical model that estimates the solar irradiance at wavelengths from 0.1 to 190 nm at 1 nm resolution with a time cadence of 60 s. This is a high enough temporal resolution to model variations due to solar flares, for which few accurate measurements at these wavelengths exist. This model also captures variations on the longer time scales of solar rotation (days) and solar cycle (years). Daily average proxies used are the 0–4 nm irradiance, the Mg II c/w, F10.7, as well as the 1 nm bins centered at 30.5 nm, 121.5 (Lyman Alpha), and 36.5 nm. The GOES 0.1–0.8 nm irradiance is used as the flare proxy. The FISM algorithms are given, and results and comparisons are shown that demonstrate the FISM estimations agree within the stated uncertainties to the various measurements of the solar Vacuum Ultraviolet (VUV) irradiance.  相似文献   

15.
Effects of relative humidity, light intensity and photoperiod on growth of 'Ga Jet' and 'TI-155' sweetpotato cultivars, using the nutrient film technique (NFT), have been reported. In this study, the effect of ambient temperature regimes (constant 28 degrees C and diurnal 28:22 degrees C day:night) and different CO2 levels (ambient, 400, 1000 and 10000 microliters/L--400, 1000 and 10000 ppm) on growth of one or both of these cultivars in NFT are reported. For a 24-h photoperiod, no storage roots were produced for either cultivar in NFT when sweetpotato plants were grown at a constant temperature of 28 degrees C. For the same photoperiod, when a 28:22 degrees C diurnal temperature variation was used, there were still no storage roots for 'TI-155' but the cv. 'Ga Jet' produced 537 g/plant of storage roots. For both a 12-h and 24-h photoperiod, 'Ga Jet' storage root fresh and dry weight tended to be higher with a 28:22 degrees C diurnal temperature variation than with a constant 28 degrees C temperature regime. Preliminary results with both 'Ga Jet' and 'TI 155' cultivars indicate a distinctive diurnal stomatal response for sweetpotato grown in NFT under an ambient CO2 level. The stomatal conductance values observed for 'Ga Jet' at elevated CO2 levels indicated that the difference between the light- and dark-period conductance rates persisted at 400, 1000, and 10000 microliters/L.  相似文献   

16.
The heliocentric orbital dynamics of a spacecraft propelled by a solar sail is affected by some uncertainty sources, including possible inaccuracies in the measurement of the sail film optical properties. Moreover, the solar radiation pressure, which is responsible for the solar sail propulsive acceleration generation, is not time-constant and is subject to fluctuations that are basically unpredictable and superimposed to the well-known 11-year solar activity cycle. In this context, this work aims at investigating the effects of such uncertainties on the actual heliocentric trajectory of a solar sail by means of stochastic simulations performed with a generalized polynomial chaos procedure. The numerical results give an estimation of their impact on the actual heliocentric trajectory and identify whether some of the uncertainty sources are more relevant than others. This is a fundamental information for directing more accurate theoretical and experimental efforts toward the most important parameters, in order to obtain an accurate knowledge of the solar sail thrust vector characteristics and, eventually, of the spacecraft heliocentric position.  相似文献   

17.
The colonization of space will depend on our ability to routinely provide for the metabolic needs (oxygen, water, and food) of a crew with minimal re-supply from Earth. On Earth, these functions are facilitated by the cultivation of plant crops, thus it is important to develop plant-based food production systems to sustain the presence of mankind in space. Farming practices on earth have evolved for thousands of years to meet both the demands of an ever-increasing population and the availability of scarce resources, and now these practices must adapt to accommodate the effects of global warming. Similar challenges are expected when earth-based agricultural practices are adapted for space-based agriculture. A key variable in space is gravity; planets (e.g. Mars, 1/3 g) and moons (e.g. Earth's moon, 1/6 g) differ from spacecraft orbiting the Earth (e.g. Space stations) or orbital transfer vehicles that are subject to microgravity. The movement of heat, water vapor, CO2 and O2 between plant surfaces and their environment is also affected by gravity. In microgravity, these processes may also be affected by reduced mass transport and thicker boundary layers around plant organs caused by the absence of buoyancy dependent convective transport. Future space farmers will have to adapt their practices to accommodate microgravity, high and low extremes in ambient temperatures, reduced atmospheric pressures, atmospheres containing high volatile organic carbon contents, and elevated to super-elevated CO2 concentrations. Farming in space must also be carried out within power-, volume-, and mass-limited life support systems and must share resources with manned crews. Improved lighting and sensor technologies will have to be developed and tested for use in space. These developments should also help make crop production in terrestrial controlled environments (plant growth chambers and greenhouses) more efficient and, therefore, make these alternative agricultural systems more economically feasible food production systems.  相似文献   

18.
There have been significant, recent advances in understanding the solar ultraviolet (UV) and X-ray spectral irradiance from several different satellite missions and from new efforts in modeling the variations of the solar spectral irradiance. The recent satellite missions with solar UV and X-ray spectral irradiance observations include the X-ray Sensor (XRS) aboard the series of NOAA GOES spacecraft, the Upper Atmosphere Research Satellite (UARS), the SOHO Solar EUV Monitor (SEM), the Solar XUV Photometers (SXP) on the Student Nitric Oxide Explorer (SNOE), the Solar EUV Experiment (SEE) aboard the Thermosphere, Ionosphere, Mesosphere, Dynamics, and Energetics (TIMED) satellite, and the Solar Radiation and Climate Experiment (SORCE) satellite. The combination of these measurements is providing new results on the variability of the solar ultraviolet irradiance throughout the ultraviolet range shortward of 200 nm and over a wide range of time scales ranging from years to seconds. The solar UV variations of flares are especially important for space weather applications and upper atmosphere research, and the period of intense solar storms in October–November 2003 has provided a wealth of new information about solar flares. The new efforts in modeling these solar UV spectral irradiance variations range from simple empirical models that use solar proxies to more complicated physics-based models that use emission measure techniques. These new models provide better understanding and insight into why the solar UV irradiance varies, and they can be used at times when solar observations are not available for atmospheric studies.  相似文献   

19.
Optical chemical sensors for environmental control and system management.   总被引:1,自引:0,他引:1  
Several fiber optic based chemical sensors have been developed for use in plant growth systems and enclosed life support systems. Optical chemical sensors offer several distinct advantages in terms of sensitivity, calibration stability, immunity to biofouling and electrical interference, and ease of multiplexing sensors for multipoint/multiparameter analysis. Also, the ability to locate fiber optic sensors in close proximity to plant roots or leaves should improve the measurement reliability by obviating the need for handling and transport which can compromise sample integrity. Polestar Technologies and GEO-CENTERS have developed and tested many types of optical chemical sensors which utilize novel glass and polymeric materials as the sensor substrate. Analytes are detected using immobilized colorimetric indication systems or molecular recognition elements. Typically transduction is via wavelength specific absorption changes with multiwavelength detection for drift compensation. Sensors have been developed for solution pH, NH3, ethylene, CO2, and dissolved metal ions. In addition, unique PC-compatible optoelectronic interfaces, as well as distributed measurement systems, so that integrated detection systems are now available. In this paper recent efforts to develop sensors for critical nutrient ions are presented.  相似文献   

20.
Heavy ion induced mutations in genetic effective cells of a higher plant.   总被引:2,自引:0,他引:2  
Arabidopsis thaliana offers different possibilities for investigating heavy ion induced early and late damage. Mutations in genetic effective cells can yield early damage, in the form of reduced vitality of the descending cell-lines and/or late damage, such as mutation induction visible in the following generations. Investigation is possible on different levels of ploidy (4n, 2n, n). Different genetic effective cells with equal genomes are available. Additionally, several different biological endpoints for each level of genome ploidy can be observed. Recent results of work in this field are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号