首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since 1988 high sensitivity dosimeter-radiometer “Liulin” has been installed on board the MIR space station. Device measured absorbed dose rate and flux of penetrating particles. Results of measurements showed that after powerful solar proton events (SPE) September–October, 1989 and March, 1991 additional quasistable radiation belts were formed in the near earth space within the interval L=1.8−3.0. These “new” belts were observed as an additional maximums in flux (and sometimes dose) channels when crossing the SAA region. “New” belts were quasi stable and existed at least several months, decaying slightly after SPE. Dose to flux ratio analysis showed that major components of these belts were energetic electrons and protons arising in connection with preceding SPEs.  相似文献   

2.
The dynamics of the ISS-measured radiation dose variations since August 2000 is studied. Use is made of the data obtained with the R-16 instrument, which consists of two ionization chambers behind different shielding thicknesses. The doses recorded during solar energetic particle (SEP) events are compared with the data obtained also by R-16 on Mir space station. The SEP events in the solar maximum of the current cycle make a much smaller contribution to the radiation dose compared with the October 1989 event recorded on Mir space station. In the latter event, the proton intensity was peaking during a strong magnetic storm. The storm-time effect of solar proton geomagnetic cutoff decreases on dose variations is estimated. The dose variations on Mir space stations due to formation of a new radiation belt of high-energy protons and electrons during a sudden commencement of March 24, 1991 storm are also studied. It was for the first time throughout the ISS and Mir dose measurement period that the counting rates recorded by both R-16 channels on ISS in 2001-2002 were nearly the same during some time intervals. This effect may arise from the decreases of relativistic electron fluxes in the outer radiation belt.  相似文献   

3.
The Liulin dosimeter-radiometer on the MIR space station detected the 19 October 1989 high energy solar proton event. These results show that the main particle increase contains protons with energies up to about 9 GeV. After the main particle onset the Liulin dosimeter observed a typical geomagnetic cutoff modulation of the dose rate from the solar particles as the MIR space station traversed magnetic latitudes. When the interplanetary shock and associated solar plasma enveloped the earth on 20 October between 14 and 17 UT the radiation exposure increased significantly due to the lowering of the geomagnetic cutoff. The analysis of this event shows how various geophysical phenomena can significantly modulate the dose rate encountered by earth-orbiting spacecraft.  相似文献   

4.
Solar particle events as seen on CRRES.   总被引:1,自引:0,他引:1  
High energy proton detectors on the Combined Release and Radiation Effects Satellite (CRRES) were used to measure near-Earth solar protons in an 18 degrees inclination orbit between 350 km and 36000 km from July 1990 to October 1991. CRRES data from the major solar particle event on 23-25 March 1991 show conclusively that MeV solar protons can penetrate deep inside the magnetosphere (to an L-shell of 2.5 RE) when a large shock-induced Sudden Storm Commencement (SSC) occurs and significant solar particle populations are present at geosynchronous altitudes. The penetration of solar particles well inside boundaries predicted by Stormer theory occurred during every large solar event of the CRRES mission, as well as many of the smaller ones. Often the deep penetrations occurred simultaneously with the formation of new trapped radiation populations which peak at L-values between 2.3 and 4 RE (depending on particle energy) and which last from days to months.  相似文献   

5.
Measurements on board the Mir space station have been used to study the dose rate and the particle flux distribution in the inner magnetosphere. The measurements have been performed with the Bulgarian-Russian dosimeter-radiometer Liulin. The paper concentrates on the dynamics of the observed "new" and "second" maxima which were created after Solar Proton Events (SPE) in the 1989-1994 time. The "second" belt was first observed after the SPE on October 20, 1989, and the last observation was after the SPE on February 20, 1994. The creation of the "new" belt is a unique phenomena seen in the Liulin data set after the SPE on March 23, 1991 and relates to the magnetic storm on March 24. The new belt fully disappears in the middle of 1993.  相似文献   

6.
Some of the Ground Level Enhancements of Solar Cosmic Rays (SCR) recorded by neutron monitors during solar cycle 22 are analyzed. The events appeared in series, and their occurrence rate in 1989-1991 was a factor of 4 larger than the average value (approximately 1/yr) for the total observation interval (since 1942). The events of Sept. 29 and Oct. 24, 1989 proved to be the more intensive. The analyzed events show no peculiarities as to the distribution of the T1/2 parameter, whereas the shape of the profile of some events is notable for a two peak structure. The latter implies the possibility of a two component SCR ejection from two different sources in the solar atmosphere. For the event of Sep. 29 we have estimated the ejection rigidity spectrum of protons to be Dsolar (R) = (1-2) 10(32)R(-2.9) Gv-1 at R > or = 1 Gv. As to its proton flux, this event proved to be by 1-2 orders less intensive than the well known event of Feb. 23 1956.  相似文献   

7.
Solar particle events can give greatly enhanced radiation at aircraft altitudes, but are both difficult to predict and to calculate retrospectively. This enhanced radiation can give significant dose to aircrew and greatly increase the rate of single event effects in avionics. Validation of calculations is required but only very few events have been measured in flight. The CREAM detector on Concorde detected the event of 29 September 1989 and also four periods of enhancement during the events of 19-24 October 1989. Instantaneous rates were enhanced by up to a factor ten compared with quiet-time cosmic rays, while flight-averages were enhanced by up to a factor six. Calculations are described for increases in radiation at aircraft altitudes using solar particle spectra in conjunction with Monte Carlo radiation transport codes. In order to obtain solar particle spectra with sufficient accuracy over the required energy range it is necessary to combine space data with measurements from a wide range of geomagnetically dispersed, ground-level neutron monitors. Such spectra have been obtained for 29 September 1989 and 24 October 1989 and these are used to calculate enhancements that are compared with the data from CREAM on Concorde. The effect of cut-off rigidity suppression by geomagnetic activity is shown to be significant. For the largest event on record on 23 February 1956, there are no space data but there are data from a number of ground-level cosmic-ray detectors. Predictions for all events show very steep dependencies on both latitude and altitude. At high latitude and altitude (17 km) calculated increases with respect to cosmic rays are a factor 70 and 500 respectively for 29 September 1989 and 23 February 1956. The levels of radiation for high latitude, subsonic routes are calculated, using London to Los Angeles as an example, and can exceed 1 mSv, which is significantly higher than for Concorde routes from Europe to New York. The sensitivity of the calculations to spectral fitting, geomagnetic activity and other assumptions demonstrates the requirement for widespread carriage of radiation monitors on aircraft.  相似文献   

8.
Meteor satellite observations in March, August, September and October 1989 recorded intensive solar proton events which caused a disturbed radiation situation in the near-Earth space. The paper presents the results of analyzing flux and spectral characteristics of the events and their relation to heliogeophysical situation.  相似文献   

9.
Proton fluxes obtained by two instruments carried on the ESA/NASA Ulysses spacecraft are reported for the period from launch in October 1990 till Jupiter encounter in February 1992. Proton energy ranges are 24-59, 71-99, 130-320, 320-2100 and > 2100 MeV. The Sun was very active during this period, the events of March 1991 being some of the largest of the solar cycle. The relationship between events on the Sun and the observed proton flux is discussed.  相似文献   

10.
Variations in the Earth's trapped (Van Allen) belts produced by solar flare particle events are not well understood. Few observations of increases in particle populations have been reported. This is particularly true for effects in low Earth orbit, where manned spaceflights are conducted. This paper reports the existence of a second proton belt and it's subsequent decay as measured by a tissue-equivalent proportional counter and a particle spectrometer on five Space Shuttle flights covering an eighteen-month period. The creation of this second belt is attributed to the injection of particles from a solar particle event which occurred at 2246 UT, March 22, 1991. Comparisons with observations onboard the Russian Mir space station and other unmanned satellites are made. Shuttle measurements and data from other spacecraft are used to determine that the e-folding time of the peak of the second proton belt. It was ten months. Proton populations in the second belt returned to values of quiescent times within eighteen months. The increase in absorbed dose attributed to protons in the second belt was approximately 20%. Passive dosimeter measurements were in good agreement with this value.  相似文献   

11.
Energetic particle intensities observed by ERNE instrument onboard SOHO spacecraft during the first two years of SOHO science mission have been analysed and compared to observations of IMP 8 satellite around two earlier sunspot minima. During an eight month period around the latest sunspot minimum, which occurred in October 1996, energetic particle intensities stayed at a lower level than during any equivalent period around solar minima of July 1976 and June 1986. During the period from March to October, 1996, there was not a single day, when the daily averaged intensity of 1.6–3 MeV protons exceeded the level of 1 proton/(cm2 sr s MeV). Also monthly counts of grouped solar flares and mean monthly sunspot number were lower than during minima of 1976 and 1986.  相似文献   

12.
The proton telescope aboard the GOES-7 satellite continuously records the proton flux at geosynchronous orbit, and therefore provides a direct measurement of the energetic protons arriving during solar energetic particle (SEP) events. Microelectronic devices are susceptible to single event upset (SEU) caused by both energetic protons and galactic cosmic ray (GCR) ions. Some devices are so sensitive that their upsets can be used as a dosimetric indicator of a high fluence of particles. The 93L422 1K SRAM is one such device. Eight of them are on the TDRS-1 satellite in geosynchronous orbit, and collectively they had been experiencing 1-2 upset/day due to the GCR background. During the large SEP events of 1989 the upset rate increased dramatically, up to about 250 for the week of 19 Oct, due to the arrival of the SEP protons. Using the GOES proton spectra, the proton-induced SEU cross section curve for the 93L422 and the shielding distribution around the 93L422, the calculated upsets based on the GOES satellite data compared well against the log of measured upsets on TDRS-1.  相似文献   

13.
We have a developed a dynamic cutoff rigidity model based on computed world grids of vertical cutoff rigidities derived from employing the Tsyganenko magnetospheric model. The dynamic range of this model covers all magnetic activity levels specified by integer values of the Kp magnetic index. We present comparisons of the measured dose observed on the space shuttle during the August 1989 solar proton event with the dose computed from solar particles predicted to be allowed through the magnetosphere to the space shuttle position. We find a one-to-one correspondence between the portion of the orbit predicted to be subjected to solar protons and the portion of the orbit where solar particle dose measurements were obtained.  相似文献   

14.
As ASTROD I travels through space, its test mass will accrue charge due to exposure of the spacecraft to high-energy particles. This test mass charge will result in Coulomb forces between the test mass and the surrounding electrodes. In earlier work, we have used the GEANT 4 toolkit to simulate charging of the ASTROD test mass due to cosmic-ray protons of energies between 0.1 and 1000 GeV at solar maximum and at solar minimum. Here we use GEANT 4 to simulate the charging process due to solar energetic particle events and interplanetary electrons. We then estimate the test mass acceleration noise due to these fluxes. The predicted charging rates range from 2247 e+/s to 47,055 e+/s, at peak intensity, for the four largest SEP events in September and October 1989. Although the noise due to charging exceeds the ASTROD I budget for the two larger events, it can be suppressed through continuous discharging. The acceleration noise during the two small events is well below the design target. The charging rate of the ASTROD I test mass due to interplanetary electrons in this simulation is about −11% of the cosmic-ray protons at solar minimum, and over −37% at solar maximum. In addition to the Monte Carlo uncertainty, an error of ±30% in the net charging rates should be added to account for uncertainties in the spectra, physics models and geometry implementations.  相似文献   

15.
Solar cycle 22 had significant, large fluence, energetic particle events on a scale reminiscent of the 19th solar cycle. Examination of the characteristics of these large events suggests that some of the old concepts of spectral form, intensity-time envelope and energy extrapolations, used to estimate the dose from large events that occurred during previous solar cycles should be re-evaluated. There has also been a dramatic change in perspective regarding the source of solar protons observed in interplanetary space. Very large fluence events are associated with powerful fast interplanetary shocks. The elemental composition and charge state of these events is suggestive of a dominate source in the solar corona and not from a very hot plasma. Furthermore, there is a strong suggestion that the intensity-time profile observed in space is dominated by the connection of the observer to an interplanetary shock source rather than to a unique location near the surface of the sun. These concepts will be examined from the perspective of energetic particles contributing to the dose experienced by an astronaut on an interplanetary space mission.  相似文献   

16.
While not specifically designed to detect solar energetic particle radiation, the Electron Reflectometer onboard Mars Global Surveyor (MGS/ER) collected such data from January 1999 through October 2006. Energetic protons (?25 MeV) and other ions penetrated the MGS/ER shielding and registered counts within the instrument’s electronics. During solar particle events (SPE’s), prolonged enhancements in the particle background were observed at Mars with time intensity profiles similar to Earth based SPE observations. Throughout the lifespan of MGS/ER, 85 distinct SPE’s were observed. Basic characteristics of Mars based SPE observations and the frequency of SPE occurrences at Mars are compared to corresponding Earth based observations. Approximately 22% of SPE’s that occurred during MGS/ER operation were observed at Earth but not Mars. Similarly, 19% of SPE’s were observed at Mars but not Earth. Time intensity profiles at Earth and Mars match predictions provided in the literature, based on the physical location of the detector with respect to the motion of the interplanetary shock wave. Note: The work described herein was largely conducted as part of a doctoral dissertation produced by the author.  相似文献   

17.
Itapetinga measurements at 48 GHz with the multibeam technique are used to determine the relative position of solar burst centroid of emission with high spatial accuracy and time resolution. For the Great Bursts of October 19,22, 1989, with a large production of relativistic particles, and October 23, it is suggested that, at 48 GHz, the bursts might have originated in more then one source in space and time. Additionally the October 19 and 22 Ground Level Events exhibited very unusual intensity-time profiles including double component structures for the onset phase. The Bern observatory spectral radio emission data show a strong spectral flattening typical for large source inhomogeneties. The interpretation for this is that large solar flares are a superposition of a few strong bursts (separated both in space and time) in the same flaring region.  相似文献   

18.
The solar activity and geomagnetic storm events of March and June 1991 were associated with the appearance of an enhanced particle flux in the trapped radiation belts as discovered by the CRRES satellite observations and later measured by shuttle radiation detectors. The solar-interplanetary conditions associated with these events appear to be a major sequence of activity near the sun's central meridian generating powerful fast interplanetary shocks resulting in major perturbations to the magnetosphere. The solar-interplanetary events in 1991 are discussed and compared to similar activity in the past such as the events in February 1986, August 1972, July 1961, November 1960, and July 1959.  相似文献   

19.
Distributions of absorbed dose and DNA clustered damage yields in various organs and tissues following the October 1989 solar particle event (SPE) were calculated by coupling the FLUKA Monte Carlo transport code with two anthropomorphic phantoms (a mathematical model and a voxel model), with the main aim of quantifying the role of the shielding features in modulating organ doses. The phantoms, which were assumed to be in deep space, were inserted into a shielding box of variable thickness and material and were irradiated with the proton spectra of the October 1989 event. Average numbers of DNA lesions per cell in different organs were calculated by adopting a technique already tested in previous works, consisting of integrating into "condensed-history" Monte Carlo transport codes--such as FLUKA--yields of radiobiological damage, either calculated with "event-by-event" track structure simulations, or taken from experimental works available in the literature. More specifically, the yields of "Complex Lesions" (or "CL", defined and calculated as a clustered DNA damage in a previous work) per unit dose and DNA mass (CL Gy-1 Da-1) due to the various beam components, including those derived from nuclear interactions with the shielding and the human body, were integrated in FLUKA. This provided spatial distributions of CL/cell yields in different organs, as well as distributions of absorbed doses. The contributions of primary protons and secondary hadrons were calculated separately, and the simulations were repeated for values of Al shielding thickness ranging between 1 and 20 g/cm2. Slight differences were found between the two phantom types. Skin and eye lenses were found to receive larger doses with respect to internal organs; however, shielding was more effective for skin and lenses. Secondary particles arising from nuclear interactions were found to have a minor role, although their relative contribution was found to be larger for the Complex Lesions than for the absorbed dose, due to their higher LET and thus higher biological effectiveness.  相似文献   

20.
Photochemical modeling and satellite data has been used to investigate the response of ozonosphere to solar proton events (SPEs) of the current (23d) maximum of solar activity. First SPE after the minima of solar activity occurred in November 1997. One of the strongest SPE after this occurred in July 2000. It was assumed in photochemical calculations that the ionization caused by solar protons in the atmosphere produced additional amount of the NOX and HOX compounds. Model runs showed strong ozone depletion in the mesosphere after SPE of 14 July 2000 for both polar regions. Corresponding study of ozone variations measured by HALOE instrument placed on board of UARS gave similar picture as the model calculations for North polar region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号