首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Comets are heterogeneous mixtures of interstellar and nebular materials. The degree of mixing of interstellar sources and nebular sources at different nuclear size scales holds the promise of revealing how cometary particles, cometesimals, and cometary nuclei accreted. We can ascribe cometary materials to interstellar and nebular sources and see how comets probe planet-forming process in our protoplanetary disk. Comets and cometary IDPs contain carbonaceous matter that appears to be either similar to poorly-graphitized (amorphous) carbon, a likely ISM source, or highly labile complex organics, with possible ISM or outer disk heritage. The oxygen fugacity of the solar nebula depends on the dynamical interplay between the inward migration of carbon-rich grains and of icy (water-rich) grains. Inside the water dissociation line, OH? reacts with carbon to form CO or CO2, consuming available oxygen and contributing to the canonical low oxygen fugacity. Alternatively, the influx of water vapor and/or oxygen rich dust grains from outer (cooler) disk regions can raise the oxygen fugacity. Low oxygen fugacity of the canonical solar nebula favors the condensation of Mg-rich crystalline silicates and Fe-metal, or the annealing of Fe-Mg amorphous silicates into Mg-rich crystals and Fe-metal via Fe-reduction. High oxygen fugacity nebular conditions favors the condensation of Fe-bearing to Fe-rich crystalline silicates. In the ISM, Fe-Mg amorphous silicates are prevalent, in stark contrast to Mg-rich crystalline silicates that are rare. Hence, cometary Mg-rich crystalline silicates formed in the hot, inner regions of the canonical solar nebula and they are the touchstone for models of the outward radial transport of nebular grains to the comet-forming zone. Stardust samples are dominated by Mg-rich crystalline silicates but also contain abundant Fe-bearing and Fe-rich crystalline silicates that are too large (?0.1 μm) to be annealed Fe-Mg amorphous silicates. By comparison with asteroids, the Stardust Fe-bearing and Fe-rich crystalline silicates suggests partial aqueous alteration in comet nuclei. However, aqueous alteration transforms Fe-rich olivine to phyllosilicates before Mg-rich olivine, and Stardust has Mg-rich and Fe-rich olivine and no phyllosilicates. Hence, we look to a nebular source for the moderately Fe-rich to nearly pure-Fe crystalline silicates. Primitive matrices have Mg-Fe silicates but no phyllosilicates, supporting the idea that Mg-Fe silicates but not phyllosilicates are products of water-rich shocks. Chondrule-formation is a late stage process in our protoplanetary disk. Stardust samples show comet 81P/Wild 2 formed at least as late to incorporate a few chondrules, requiring radial transport of chondrules out to perhaps >20 AU. By similar radial transport mechanisms, collisional fragments of aqueously altered asteroids, in particular achondrites that formed earlier than chondrules, might reach the comet-forming zones. However, Stardust samples do not have phyllosilicates and chondrules are rare. Hence, the nebular refractory grains in comet 81P/Wild 2, as well as other comets, appear to be pre-accretionary with respect to asteroid parent bodies. By discussing nebular pathways for the formation of Fe-rich crystalline silicates, and also phyllosilicates and carbonates, we put forth the view that comets contain both the interstellar ingredients for and the products of nebular transmutation.  相似文献   

2.
There is significant progress in the observations, theory, and understanding of the x-ray and EUV emissions from comets since their discovery in 1996. That discovery was so puzzling because comets appear to be more efficient emitters of x-rays than the Moon by a factor of 80 000. The detected emissions are general properties of comets and have been currently detected and analyzed in thirteen comets from five orbiting observatories. The observational studies before 2000 were based on x-ray cameras and low resolution (E/δE ≈ 1.5-3) instruments and focused on the morphology of xrays, their correlations with gas and dust productions in comets and with the solar x-rays and the solar wind. Even those observations made it possible to choose uniquely charge exchange between the solar wind heavy ions and cometary neutrals as the main excitation process. The recently published spectra are of much better quality and result in the identification of the emissions of the multiply charged ions of O, C, Ne, Mg, and Si which are brought to comets by the solar wind. The observed spectra have been used to study the solar wind composition and its variations. Theoretical analyses of x-ray and EUV photon excitation in comets by charge exchange, scattering of the solar photons by attogram dust particles, energetic electron impact and bremsstrahlung, collisions between cometary and interplanetary dust, and solar x-ray scattering and fluorescence in comets have been made. These analyses confirm charge exchange as the main excitation mechanism, which is responsible for more than 90% of the observed emission, while each of the other processes is limited to a few percent or less. The theory of charge exchange and different methods of calculation for charge exchange are considered. Laboratory studies of charge exchange relevant to the conditions in comets are reviewed. Total and state-selective cross sections of charge exchange measured in the laboratory are tabulated. Simulations of synthetic spectra of charge exchange in comets are discussed. X-ray and EUV emissions from comets are related to different disciplines and fields such as cometary physics, fundamental physics, x-rays spectroscopy, and space physics.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

3.
We discuss the possibility that CI and CM carbonaceous chondrites are fragments of extinct cometary nuclei. Theoretical and observational work suggests that comets evolve into asteroids, and several extinct cometary nuclei are now suspected to be among the near Earth object population. This population is the most likely source of meteorites and consequently, we may expect that some meteorites are from extinct comets in this population. The mineralogy and chemistry of CI and CM chondrites is consistent with the view that they originate from asteroidal objects of carbonaceous spectral classes, and these objects in turn may have a cometary origin. We do not suggest that CI or CM chondrites are directly delivered by active comets during perihelion passage or that these chondrites come from cometary debris in meteor streams. Instead, we summarize arguments suggesting that CI and CM chondrites represent fragments of cometary nuclei which evolved into near Earth asteroids after losing their volatiles. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
There is significant progress in the observations, theory, and understanding of the x-ray and EUV emissions from comets since their discovery in 1996. That discovery was so puzzling because comets appear to be more efficient emitters of x-rays than the Moon by a factor of 80000. The detected emissions are general properties of comets and have been currently detected and analyzed in thirteen comets from five orbiting observatories. The observational studies before 2000 were based on x-ray cameras and low resolution (E/E1.5–3) instruments and focused on the morphology of x-rays, their correlations with gas and dust productions in comets and with the solar x-rays and the solar wind. Even those observations made it possible to choose uniquely charge exchange between the solar wind heavy ions and cometary neutrals as the main excitation process. The recently published spectra are of much better quality and result in the identification of the emissions of the multiply charged ions of O, C, Ne, Mg, and Si which are brought to comets by the solar wind. The observed spectra have been used to study the solar wind composition and its variations. Theoretical analyses of x-ray and EUV photon excitation in comets by charge exchange, scattering of the solar photons by attogram dust particles, energetic electron impact and bremsstrahlung, collisions between cometary and interplanetary dust, and solar x-ray scattering and fluorescence in comets have been made. These analyses confirm charge exchange as the main excitation mechanism, which is responsible for more than 90% of the observed emission, while each of the other processes is limited to a few percent or less. The theory of charge exchange and different methods of calculation for charge exchange are considered. Laboratory studies of charge exchange relevant to the conditions in comets are reviewed. Total and state-selective cross sections of charge exchange measured in the laboratory are tabulated. Simulations of synthetic spectra of charge exchange in comets are discussed. X-ray and EUV emissions from comets are related to different disciplines and fields such as cometary physics, fundamental physics, x-rays spectroscopy, and space physics.  相似文献   

5.
It is widely believed that cometary orbits contain important clues to both the outer solar system’s current structure and its past dynamical evolution. The first part of this paper summarizes the results of numerical simulations designed to study the dynamical origins of observed comets and to link the observed populations to the reservoirs from which they are currently leaking. The second part reviews simulations which are designed to study the dynamical origin of the reservoirs themselves. The paper concludes with a brief discussion of the currently unresolved issue of where in the primordial solar nebula the different dynamical classes of observed comets originated.  相似文献   

6.
The planned missions to Comet Halley, which will arrive at the nearest space of the Sun in 1986, have recently revived interest in studying solar wind interaction with comets. Several unsolved problems exist and the most urgent of them are as follows:
  1. The character of the solar wind interaction with comets: bow shocks and contact surface formation near comets; similarities and differences of solar- wind interaction with comets and with Venus. The differences are probably associated with a great extension of neutral atmospheres of comets (due to a practical lack of cometary gravitation) and the ‘loading’ of the solar wind flux by cometary ions during the interaction.
  2. The anomalous ionization in cometary heads.
  3. The problem of the anamalously high accelerations of ions in the plasma tails of comets.
  4. The variability of plasma structures observed in cometary tails.
  相似文献   

7.
Altwegg  K.  Balsiger  H.  Geiss  J. 《Space Science Reviews》1999,90(1-2):3-18
The investigation of the volatile material in the coma of comets is a key to understanding the origin of cometary material, the physical and chemical conditions in the early solar system, the process of comet formation, and the changes that comets have undergone during the last 4.6 billion years. So far, in situ investigations of the volatile constituents have been confined to a single comet, namely P/Halley in 1986. Although, the Giotto mission gave only a few hours of data from the coma, it has yielded a surprising amount of new data and has advanced cometary science by a large step. In the present article the most important results of the measurements of the volatile material of Halley's comet are summarized and an overview of the identified molecules is given. Furthermore, a list of identified radicals and unstable molecules is presented for the first time. At least one of the radicals, namely CH2, seems to be present as such in the cometary ice. As an outlook to the future we present a list of open questions concerning cometary volatiles and a short preview on the next generation of mass spectrometers that are being built for the International Rosetta Mission to explore the coma of Comet Wirtanen. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Comets are thought to preserve the most pristine material currently present in the solar system, as they are formed by agglomeration of dust particles in the solar nebula, far from the Sun, and their interiors have remained cold. By approaching the Sun, volatile components and dust particles are released forming the cometary coma. During the phase of Heavy Bombardment, 3.8--4 billion years ago, cometary matter was delivered to the Early Earth. Precise knowledge on the physico-chemical composition of comets is crucial to understand the formation of the Solar System, the evolution of Earth and particularly the starting conditions for the origin of life on Earth. Here, we report on the COSAC instrument, part of the ESA cometary mission Rosetta, which is designed to characterize, identify, and quantify volatile cometary compounds, including larger organic molecules, by in situ measurements of surface and subsurface cometary samples. The technical concept of a multi-column enantio-selective gas chromatograph (GC) coupled to a linear reflectron time-of-flight mass-spectrometer instrument is presented together with its realisation under the scientific guidance of the Max-Planck-Institute for Solar System Research in Katlenburg-Lindau, Germany. The instrument's technical data are given; first measurements making use of standard samples are presented. The cometary science community is looking forward to receive fascinating data from COSAC cometary in situ measurements in 2014.  相似文献   

9.
The modern theory of cometary dynamics is based on Oort's hypothesis that the solar system is surrounded by a spherically symmetric cloud of 1011 to 1012 comets extending out to interstellar distances. Dynamical modeling and analysis of cometary motion have confirmed the ability of the Oort hypothesis to explain the observed distribution of energies for the long-period comet orbits. The motion of comets in the Oort cloud is controlled by perturbations from random passing stars, interstellar clouds, and the galactic gravitational field. Additionally, comets which enter the planetary region are perturbed by the major planets and by nongravitational forces resulting from jetting of volatiles on the surfaces of the cometary nuclei. The current Oort cloud is estimated to have a radius of 6 to 8 × 104 AU, and to contain some 2 × 1012 comets with a total mass of 7 to 8 Earth masses. Evidence has begun to accumulate for the existence of a massive inner Oort cloud extending from just beyond the orbit of Neptune to 104 AU or more, with a population up to 100 times that of the outer Oort cloud. This inner cloud may serve as a reservoir to replenish the outer cloud as comets are stripped away by the various perturbers, and may also provide a more efficient source for the short-period comets. Recent suggestions of an unseen solar companion star or a tenth planet orbiting in the inner cloud and causing periodic comet showers on the Earth are likely unfounded. The formation site of the comets in the Oort cloud was likely the extended nebula accretion disc reaching from about 15 to 500 AU from the forming protosun. Comets which escape from the Oort cloud contribute to the flux of interstellar comets, though capture of interstellar comets by the solar system is extremely unlikely. The existence of Oort clouds around other main sequence stars has been suggested by the detection by the IRAS spacecraft of cool dust shells around about 10% of nearby stars.  相似文献   

10.
Strazzulla  G. 《Space Science Reviews》1999,90(1-2):269-274
For about 20 years laboratory research has been carried out on the effects induced by energetic ions on materials (ices, silicates, carbons) of cometary relevance. Here I present some recent results and outline the relevance such laboratory investigations might have for understanding the origin of cometary materials. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Stern  S.A. 《Space Science Reviews》1999,90(1-2):355-361
The remote sensing of comets in the ultraviolet bandpass has been a valuable tool for studying the structure, composition, variability, and physical processes at work in cometary comae. By extension, these studies of comae have revealed key insights into the composition of cometary nuclei. Here we briefly review the ultraviolet studies of comets, and then take a look toward the future of such work as anticipated by the advent of several key new instruments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ~2–5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets’ region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time.  相似文献   

13.
Deuterium fractionations in cometary ices provide important clues to the origin and evolution of comets. Mass spectrometers aboard spaceprobe Giotto revealed the first accurate D/H ratios in the water of Comet 1P/Halley. Ground-based observations of HDO in Comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp), the detection of DCN in Comet Hale-Bopp, and upper limits for several other D-bearing molecules complement our limited sample of D/H measurements. On the basis of this data set all Oort cloud comets seem to exhibit a similar ratio in H2O, enriched by about a factor of two relative to terrestrial water and approximately one order of magnitude relative to the protosolar value. Oort cloud comets, and by inference also classical short-period comets derived from the Kuiper Belt cannot be the only source for the Earth's oceans. The cometary O/C ratio and dynamical reasons make it difficult to defend an early influx of icy planetesimals from the Jupiter zone to the early Earth. D/H measurements of OH groups in phyllosilicate rich meteorites suggest a mixture of cometary water and water adsorbed from the nebula by the rocky grains that formed the bulk of the Earth may be responsible for the terrestrial D/H. The D/H ratio in cometary HCN is 7 times higher than the value in cometary H2O. Species-dependent D-fractionations occur at low temperatures and low gas densities via ion-molecule or grain-surface reactions and cannot be explained by a pure solar nebula chemistry. It is plausible that cometary volatiles preserved the interstellar D fractionation. The observed D abundances set a lower limit to the formation temperature of (30 ± 10) K. Similar numbers can be derived from the ortho-to-para ratio in cometary water, from the absence of neon in cometary ices and the presence of S2. Noble gases on Earth and Mars, and the relative abundance of cometary hydrocarbons place the comet formation temperature near 50 K. So far all cometary D/H measurements refer to bulk compositions, and it is conceivable that significant departures from the mean value could occur at the grain-size level. Strong isotope effects as a result of coma chemistry can be excluded for molecules H2O and HCN. A comparison of the cometary ratio with values found in the atmospheres of the outer planets is consistent with the long-held idea that the gas planets formed around icy cores with a high cometary D/H ratio and subsequently accumulated significant amounts of H2 from the solar nebula with a low protosolar D/H. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
15.
The International Rosetta Mission is set for a rendezvous with Comet 67 P/Churyumov-Gerasimenko in 2014. On its 10 year journey to the comet, the spacecraft will also perform a fly-by of the two asteroids Stein and Lutetia in 2008 and 2010, respectively. The mission goal is to study the origin of comets, the relationship between cometary and interstellar material and its implications with regard to the origin of the Solar System. Measurements will be performed that shed light into the development of cometary activity and the processes in the surface layer of the nucleus and the inner coma. The Micro-Imaging Dust Analysis System (MIDAS) instrument is an essential element of Rosetta’s scientific payload. It will provide 3D images and statistical parameters of pristine cometary particles in the nm-μm range from Comet 67P/Churyumov-Gerasimenko. According to cometary dust models and experience gained from the Giotto and Vega missions to 1P/Halley, there appears to be an abundance of particles in this size range, which also covers the building blocks of pristine interplanetary dust particles. The dust collector of MIDAS will point at the comet and collect particles drifting outwards from the nucleus surface. MIDAS is based on an Atomic Force Microscope (AFM), a type of scanning microprobe able to image small structures in 3D. AFM images provide morphological and statistical information on the dust population, including texture, shape, size and flux. Although the AFM uses proven laboratory technology, MIDAS is its first such application in space. This paper describes the scientific objectives and background, the technical implementation and the capabilities of MIDAS as they stand after the commissioning of the flight instrument, and the implications for cometary measurements.  相似文献   

16.
Isotopic ratios in comets provide keys for the understanding of the origin of cometary material, and the physical and chemical conditions in the early Solar Nebula. We review here measurements acquired on the D/H, 12C/13C, 16O/18O, 14N/15N, 32S/34S ratios in dust and gases, and discuss their cosmogonic implications. The prospects for future measurements from cometary space missions and remote sensing observations at millimeter and submillimeter wavelengths are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
A brief discussion is given of the physical processes that may lead to a differentiation of the nucleus of short period comets. It is concluded that samples from the near-surface layers of such comets may give us important information on the initial state of cometary organics and refractories. Cometary ices are more likely to be indicators of the recent evolution of the comet.  相似文献   

18.
ISO performed a large variety of observing programmes on comets, asteroids and zodiacal light – covering about 1% of the archived observations – with a surprisingly rewarding scientific return. Outstanding results were related to the exceptionally bright comet Hale–Bopp and to ISO's capability to study in detail the water spectrum in a direct way. But many other results were broadly recognised: Discovery of new molecules in comets, the studies of crystalline silicates, the work on asteroid surface mineralogy, results from thermophysical studies of asteroids, a new determination of the asteroid number density in the main-belt and last but not least, the investigations on the spatial and spectral features of the zodiacal light.  相似文献   

19.
Primitive meteorites and interplanetary dust particles contain small quantities of dust grains with highly anomalous isotopic compositions. These grains formed in the winds of evolved stars and in the ejecta of stellar explosions, i.e., they represent a sample of circumstellar grains that can be analyzed with high precision in the laboratory. Such studies have provided a wealth of information on stellar evolution and nucleosynthesis, Galactic chemical evolution, grain growth in stellar environments, interstellar chemistry, and the inventory of stars that contributed dust to the Solar System. Among the identified circumstellar grains in primitive solar system matter are diamond, graphite, silicon carbide, silicon nitride, oxides, and silicates. Circumstellar grains have also been found in cometary matter. To date the available information on circumstellar grains in comets is limited, but extended studies of matter returned by the Stardust mission may help to overcome the existing gaps.  相似文献   

20.
Cometary Dust     
This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth’s orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号