首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Super rogue ion-acoustic waves are proposed as a physical catalyst for the heavy hydrocarbon ions formation in the Titan ionosphere. We justified that analytically and numerically by probing a Titan referenced plasma system, consists of the most abundant positive ions and superthermal electrons. A solution of the nonlinear Schrödinger equation (NLSE) has provided us by the plasma (un) stable regions at altitude 900–1200 km from the Titan surface with superthermal parameter values, relative ion to electron densities, and temperature ratio variations. Our results are not only agreed with the Cassini data but also predict a chemistry independent approach for the heavy hydrocarbons’ formation conditions.  相似文献   

2.
Results of computer simulations of the broad continuum (BC) feature of stimulated electromagnetic emissions (SEE) of the ionosphere are presented. The simulations were performed using the model of BC generation based on the double transformation of electromagnetic waves to upper hybrid (UH) waves and back with artificial small scale irregularities (ASI) of plasma density. An induced scattering of the UH waves by thermal ions provided a wide spectrum of SEE. For the simulations an empirical model of the ASI spectrum, development and decay was used.  相似文献   

3.
利用网格粒子云(PIC)模型。在一定条件下,对电离层加热实验中静电波的激发和参量不稳定性的产生,作一维静电粒子模拟,模拟结果表明,SEE的特征与加热泵波频率ω0和电子回旋频率nωce之间的比值有关。入射泵波的电场与地磁场之间的夹角也是影响SEE的一个因素。  相似文献   

4.
The Zakharov–Kuznetzov (ZK) equation is derived for nonlinear electrostatic waves in a weakly magnetized plasma in the presence of anisotropic ion pressure and superthermal electrons. The anisotropic ion pressure is defined using Chew–Goldberger–Low (CGL) while a generalized Lorentzian (kappa) distribution is assumed for the non-thermal electrons. The standard reductive perturbation method (RPM) is employed to derive the two dimensional ZK equation for the dynamics of obliquely propagating low frequency ion acoustic wave. The influence of spectral index (kappa) of non-thermal electron on the soliton is discussed in the presence of anisotropic ion pressure in plasmas. It is found that ion pressure anisotropy and superthermality of electrons affect both the width and amplitude of the solitary waves. On the other hand the magnetic field is found to alter the dispersive property of the plasma only, and hence the width of the solitons is affected while the amplitude of the solitary waves is independent of external magnetic field. The numerical results are also presented for illustrations.  相似文献   

5.
New results on growth and decay times of the stimulated electromagnetic emission (SEE), obtained using a special quasi-continuous schedule of HF pump wave radiation, are presented. The employed technique allows to study the evolution of HF plasma turbulence with a high time resolution ( 0.25 ms). It is established that for the broad continuum SEE component the emission intensity starts to decrease within the delay time τD 0.5−3.2 ms after pump wave turn-off, where longer times correspond to lower SEE frequencies. The effect is explained in terms of transfer of HF-excited plasma waves throughout their spectrum due to induced scattering by thermal ions.  相似文献   

6.
The 2D MHD model of the flare magnetic reconnection shows that a reconnection activity, changes of the magnetic field topology and generation of waves are connected. It is found that after the phase of a quasi-stationary reconnection in the extended current sheet above the flare arcade the tearing mode instability produces the plasmoids which then can interact and generate MHD waves. Results of particle-in-cell simulations of the tearing processes, which accelerate electrons, are mentioned. Then all these processes are discussed from the point of view of possible radio emissions. While shocks can contribute to the type II radio burst, the superthermal electrons trapped in plasmoids can generate so called drifting pulsating structures. Furthermore, regions with the MHD turbulence may manifest themselves as the lace or dm-spike bursts.  相似文献   

7.
Wave effects are discussed pointing to improvement of whistler propagation in the ionosphere illuminated by a powerful radio wave. The large scale irregularities (ducts) responsible for these effects are formed in the illuminated ionospheric region by the process of electron heating by the fields of the pump wave and excited plasma oscillations. These irregularities may also be created in the ionosphere and plasmasphere by fluxes of suprathermal electrons accelerated by the plasma turbulence in the reflection region of the pump wave.  相似文献   

8.
The Sun cubE onE (SEE) is a 12U CubeSat mission proposed for a phase A/B study to the Italian Space Agency that will investigate Gamma and X-ray fluxes and ultraviolet (UV) solar emission to support studies in Sun-Earth interaction and Space Weather from LEO. More in detail, SEE’s primary goals are to measure the flares emission from soft-X to Gamma ray energy range and to monitor the solar activity in the Fraunhofer Mg II doublet at 280 nm, taking advantage of a full disk imager payload. The Gamma and X-ray fluxes will be studied with unprecedented temporal resolution and with a multi-wavelength approach thanks to the combined use of silicon photodiode and silicon photomultiplier (SiPM) -based detectors. The flare spectrum will be explored from the keV to the MeV range of energies by the same payload, and with a cadence up to 10 kHz and with single-photon detection capabilities to unveil the sources of the solar flares. The energy range covers the same bands used by GOES satellites, which are the standard bands for flare magnitude definition. At the same time SiPM detectors combined with scintillators allow to cover the non-thermal bremsstrahlung emission in the gamma energy range. Given its UV imaging capabilities, SEE will be a key space asset to support detailed studies on solar activity, especially in relation to ultraviolet radiation which strongly interacts with the upper layers of the Earth’s atmosphere, and in relation to space safety, included in the field of human space exploration. The main goal for the UV payload is to study the evolution of the solar UV emission in the Mg II band at two different time scales: yearly variations along the solar cycle and transient variations during flare events. The Mg II index is commonly used as a proxy of the solar activity in the Sun-as-a-star paradigm, in which solar irradiance variations in the UV correlate with the variations in stratospheric ozone concentrations and other physical parameters of the Earth high atmosphere. SEE data will be used together with space and ground-based observatories that provide Solar data (e.g. Solar Orbiter, IRIS, GONG, TSST), high energy particle fluxes (e.g. GOES, MAXI, CSES) and geomagnetic data in a multi-instrument/multi-wavelength/multi-messenger approach.  相似文献   

9.
The GOES X3.9 flare on 03 November 2003 at ∼09:45 UT was observed from metric to millimetric wavelengths by the Nançay Radioheliograph (NRH), the Radio Solar Telescope Network (RSTN) and by radio instruments operated by the Institute of Applied Physics (University of Bern). This flare was simultaneously observed and imaged up to several 100 keV by the RHESSI experiment. The time profile of the X-ray emission above 100 keV and of the radio emissions shows two main parts, impulsive emission lasting about 3 min and long duration emission (partially observed by RHESSI) separated in time by 4 min. We shall focus here on the modulations of the broad-band radio continua and of the X-ray emissions observed in the second part of the flare. The observations suggest that gyrosynchrotron emission is the prevailing emission mechanism even at decimetric wavelengths for the broad-band radio emission. Following this interpretation, we deduce the density and the magnetic field of the decimetric sources and briefly comment on possible interpretations of the modulations.  相似文献   

10.
Centaurus A (Cen A, NGC 5128) is the nearest active galaxy and, notably, the viewing angle with respect to the jet axis is very large (> 70°). A first contemporaneous OSSE, COMPTEL, and EGRET spectrum obtained in October 1991 covers an energy range from 50 keV up to 1 GeV. This γ-ray broad-band spectrum was taken when Cen A was in an intermediate emission state as defined by the BATSE X-ray light-curve. The first simultaneous multiwavelength spectrum from radio to γ-rays was measured in July 1995 when Cen A was in a low emission state (the prevailing state for the last 7 years). The different spatial and temporal resolution in the different frequency regimes produces problems in the construction and interpretation of the multiwavelength spectra. These are addressed in this paper. The detection of emission > 1 MeV makes the inclusion of such high-energy emission into models for the spectral energy distribution mandatory.  相似文献   

11.
脉冲激光作为模拟测试空间探测载荷半导体器件的单粒子效应现象的一种较新型手段,具有可以定位器件对单粒子效应敏感的具体单元以及动态测试电路系统对单粒子效应的时间响应特性的特点,能够满足工程部门、器件研发部门的不同需求。通过实验与理论研究,建立单粒子锁定与翻转效应的激光阈值能量与重离子LET值的对应关系,解决了脉冲激光模拟测试的激光结果如何定量的关键问题,据此可以定量摸底评估器件的单粒子效应敏感度,使脉冲激光测试载荷的结果更具评价以及指导意义,这对建立统一的脉冲激光单粒子效应评估试验标准以及对脉冲激光试验的推广具有重要意义。空间探测载荷发生单粒子效应后器件功能特性及电路系统的影响、防范单粒子效应电路条件影响的手段下电路系统的抗单粒子效应设计措施是的有效性,以及为空间探测专门研制的抗辐射ASIC电路评价,都需要更加精细的单粒子效应测试方法。通过建立便捷、低成本的脉冲激光定量试验的手段,解决了空间探测载荷上述单粒子效应试验的问题。  相似文献   

12.
为解决电子倍增器、场发射阴极和粒子/光子探测器现有阴极材料次级发射系数低且发射不稳定的问题,对微波等离子体化学气相沉积(MicrowavePlasmaChemicalVaporDeposition,MPCVD)法结合H等离子体表面处理工艺制备的不同B2H6/CH4浓度的硼掺杂金刚石薄膜的次级发射能力进行了研究。样品表面扫描电子显微镜和拉曼光谱分析结果显示,硼掺杂金刚石膜表面形貌与未掺杂的金刚石膜相似,样品表面均为高纯度的金刚石相。将置于空气中数日且未经任何表面处理的硼掺杂金刚石样品进行次级电子发射性能测试,结果显示一次电子入射能量为1keV时,得到高达18.3的二次电子发射系数。试验证实这种具有高二次电子发射系数的硼掺杂金刚石膜,暴露空气中由于表面氧化会破坏其表面的负电子亲和势,而真空中加热会使表面重新恢复负电子亲和势,这种负电子亲和势的完整保留,提高了该材料次级发射的稳定性,在器件中具有重要的应用前景。  相似文献   

13.
本文分析了反向赤道电射流条件下的不均匀性的对流放大特性。根据电射流不稳定性的线性理论,对一个分层均匀的电射流的模式的数值计算表明:在反向电射流条件下,电射流不均匀性有如下的特性:在波的传播过程中,在上电射流区内,波矢向下旋转,在下电射流区内,波矢向上旋转;在驱动电场ED数值相同的情况下,反向电射流条件下的射线路径积分增长率r比正常电射流情况的要小得多。这是由于波的群速度方向是向下的,而电子密度梯度起稳定化作用。对于电子密度的特征长度LN=6km和│ED│=0.8mV/m,波长λ=10m,高度h≥105km,有r<20。在这一高度范围,波可能是不饱和的,增大LN,使波在h=105km饱和的临界电场│ED│值减小。上述计算结果可解释某些在反向电射流条件下,在Addis-Ababa观测到的10m波长雷达回波的特性。   相似文献   

14.
Results of a satellite experiment are presented on detection of VLF and ELF-waves excited by irradiation of the night ionosphere F-region by the field of a nonmodulated high-power radio wave. The excited VLF and ELF-waves have been detected at the topside ionosphere heights h=500–1000 km in the frequency bands 8 kHz相似文献   

15.
Biological damages such as mutations, chromosomal aberrations etc. are a consequence of biochemical changes mostly in the DNA. With ionizing radiation, these chemical changes are due to primary ionization events and secondary ionization effects caused by the primarily produced electrons. Differences in the biological response of densely ionizing radiation, like heavy charged particles, in comparison to sparsely ionizing radiation, such as X- or gamma-rays, are mainly due to the differences in the production of the so called delta-electrons. Therefore, the emission process of electrons i.e. the cross section for the primary ionization event as well as the energy and angular distribution of the emitted electrons should be understood in detail. The delta-electron emission processes occuring in fast heavy ion atom collisions are explained qualitatively. The different spectral structures of electron emission arising from either the target or the projectile are explained in terms of simple models of the kinetics of momentum transfer induced by the COULOMB forces. In collisions of very heavy ions with matter, high nuclear COULOMB forces are created. These forces lead to a strong polarization of the electronic states of the participated electrons. The effects of this polarization are discussed.  相似文献   

16.
With the recent advances in all-sky imaging technology for nightglow emission studies, the F-region OI 630 nm emission has become an important tool for ionospheric/thermospheric coupling studies. At equatorial and low latitude regions, the all-sky imaging observations of the OI 630 nm emission show quasi north-south aligned intensity depletion bands, which are the optical signatures of large scale F-region plasma irregularities. By observing the motion of the intensity depleted bands it is possible to infer the ionospheric plasma zonal velocity of the depletion. The north-south aligned structures seen in the field of view of the all-sky imaging system corotate with the ionospheric plasma, so that by calculating the spatial displacements occurring during successive OI 630 nm emission images we can infer the ionospheric plasma drift velocity. However, the plasma bubbles have their own internal space-time dynamics leading to changes in their shape and dimensions and this may induce some errors in the calculated drift velocities. In this paper we take into account the space-time changes in the plasma bubbles in order to calculate the ionospheric plasma zonal drift velocities using the OI 630 nm nightglow emission.  相似文献   

17.
Important observational manifestations of subvisible mesospheric dust are Polar Mesospheric Summer Echoes (PMSEs) which are produced by scattering from electron irregularities produced by dust charging. It has been observed that the PMSE strength can be artificially modified by using a ground-based ionospheric heating facility to perturb the electron irregularity source region that is believed to produce PMSE. Recently it has become evident that significant diagnostic information may be available about the dust layer from the temporal behavior of the electron irregularities during the heating process which modifies the background electron temperature. Particularly interesting and important periods of the temporal behavior are during the turn-on and turn-off of the radio wave heating. Most past theoretical models and experimental investigations have concentrated primarily on the later period. The objective here is to consider the temporal behavior and possibilities for diagnostic information available during the turn-on period of the radio wave. First, approximate analytical models are developed and compared to a more accurate full computational model as a reference. Then from the temporal behavior of the electron irregularities during the turn-on of the radio wave, the analytical models are used to obtain possible diagnostic information for various charged dust and background plasma quantities.  相似文献   

18.
A collapsing trap in the cusp topology of solar flares is simulated using a 2D MHD model. Then in this collapsing trap trajectories of test electrons and their acceleration are studied in detail. In the model we use the test particle technique with the guiding centre approximation including also collisional losses and scattering of test electrons. Computing the X-ray emission of the accelerated electrons it is shown that the acceleration process in the collapsing trap easily explains the formation of observed loop-top X-ray sources.  相似文献   

19.
After subtracting the intense dust-scattered continuum from the original spectra transmitted by the Vega 2 three-channel spectrometer, a broad-band emission emerges in the 342-375 nm spectral range when the cometocentric projected distance p is smaller than 5000 km. This newly detected emission varies as p-1, which implies that the involved molecule(s) has a parent-type behavior. The emission band presents four peaks at 347, 356, 364 and 373 nm. It is tentatively identified as being due to phenanthrene, a three-cycle aromatic condensed hydrocarbon. A determination of the gQ product, where g is the fluorescence quantum efficiency and Q the production rate gives gQ = 1.2 x 10(25). If g = 0.012, it comes Q = 1 x 10(27) s-1. The detection of phenanthrene in Halley's inner coma is an important argument in favor of a similarity of composition between cometary material and interstellar matter. It supports the hypothesis that comets have kept trace of the interstellar composition through the solar system formation epoch.  相似文献   

20.
采用加权求和方法确定不同能量入射电子对应不同次级(二次发射和反向散射)电子产率公式,用来计算航天材料高压带电的阈值温度T~* 和临界能量E~*,得到了与观测数据较为接近的临界带电特性。文中进一步阐明运用T~* 和E~* 两个概念,可以定性解释航天器带电的复杂特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号