首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
面向飞机装配的机器人定位误差和残差补偿   总被引:3,自引:1,他引:2  
工业机器人由于其高柔性和低成本而被越来越多地应用到飞机自动钻铆系统中,使用精度补偿有效地提高机器人的绝对定位精度是保证产品质量的关键,为进一步提高机器人末端定位精度,提出了基于误差相似度的残差补偿方法。首先使用基于运动学参数标定的方法辨识出机器人的几何参数误差,再利用基于误差相似度的方法对残余误差进行估计,实现对机器人的误差和残差的补偿。以工业机器人KUKA KR-30 HA为对象所进行的试验验证表明,机器人的绝对定位精度平均值由补偿前的0.879mm经过定位误差补偿后提高到0.194mm,经过残差补偿后进一步提高到0.141mm,经过定位误差和残差补偿后的机器人最大误差由1.492mm降低为0.296mm,最大绝对定位精度误差降低了80.16%。该方法能有效地补偿参数辨识后遗留的残差,进一步提高机器人的定位精度。  相似文献   

2.
工业机器人由于绝对定位精度低的缺点一直难以应用于航空航天高精制造领域。影响机器人定位误差的因素较多,对精确建立其误差模型提出了严峻的挑战。现有的建模方法通常将机器人定位误差与其位姿关联,忽略了同一位姿下关节回差对其定位误差的影响。为提高工业机器人绝对定位精度,提出了一种考虑关节回差的工业机器人误差相似度精度补偿方法。基于改进的Denavit-Hartenberg模型建立了包含机器人几何误差、坐标系误差和传动误差的综合辨识模型,利用最小二乘法辨识了关节回差。根据辨识得到的关节回差等参数构建了误差相似度模型,使用3种型号的机器人验证了该方法对提高机器人绝对定位精度的可行性和通用性,最终通过KUKA KR500-3机器人进行了制孔试验验证。试验结果表明,该方法相较于传统方法将机器人定位误差降低了约0.1 mm,精度提高了30%以上,制孔孔位精度从0.701 mm提升至0.134 mm,为有效提高工业机器人的绝对定位精度提供了一种技术手段。  相似文献   

3.
工业机器人由于高效率、低成本被广泛应用于智能制造业,但较低的绝对定位精度限制了其在高精度制造领域的推广应用。为提升机器人绝对定位精度并解决传统复杂的误差建模问题,提出了一种基于深度神经网络的机器人定位误差补偿方法。首先在笛卡尔空间进行拉丁超立方采样规划,获得目标点姿态对误差的影响规律;然后建立基于遗传粒子群算法优化深度神经网络(GPSO–DNN)的定位误差预测模型,实现对误差的预测和补偿;最后为验证该方法的准确性和优越性,与其他误差补偿模型进行对比。试验结果表明,基于GPSO–DNN的定位误差补偿方法的补偿精度最高,定位误差由补偿前的1.529mm减小为0.343mm,精度提高了77.57%。该方法能有效补偿机器人定位误差,大幅提高机器人的定位精度。  相似文献   

4.
针对航空制孔机器人绝对定位精度补偿中存在的建模复杂及运算量大的问题,提出了一种基于极限学习机的绝对定位精度补偿方法。该方法通过将机器人视为一个黑箱系统,忽略机器人的几何因素和非几何因素的影响,通过高精度的激光跟踪仪测量获得机器人的末端运动误差,采用极限学习机建立机器人误差预测模型。由机器人误差预测模型获得机器人在期望位置的位置偏差,通过修正机器人位置坐标来实现机器人的绝对定位精度补偿。最后该方法在航空制孔机器人上进行了试验,试验结果显示机器人的绝对位置误差的平均值和最大值分别降低了75.69%和78.16%。  相似文献   

5.
石章虎  何晓煦  曾德标  雷沛 《航空学报》2020,41(11):424105-424105
对由AGV承载的工业机器人组成的AGV式移动制孔机器人的定位误差补偿方法进行了研究。在面向飞机装配的AGV式移动制孔机器人系统中,利用激光跟踪仪构建坐标系,提出了AGV式移动制孔机器人机座坐标系的换站方法,能更好地适应飞机制造多品种、小批量的特点。基于对AGV式移动制孔机器人定位误差源的分析,利用定位误差相似性,提出针对AGV式移动制孔机器人的基于反距离加权定位误差的空间插值与补偿方法,克服了现有技术对于AGV式移动制孔机器人定位误差补偿的局限性。以AGV搭载的KUKA KR480型工业机器人制孔系统作为试验对象,通过试验选取最优网格步长,补偿结果表明,能将系统综合定位误差平均值由补偿前的1.045 mm降低到0.227 mm,最大绝对定位误差由补偿前的2.727 mm降低到0.478 mm,降低了82.47%,该方法能有效提高AGV式移动制孔机器人的绝对定位精度。  相似文献   

6.
机器人自动制孔中绝对定位误差的分析与补偿   总被引:4,自引:4,他引:0  
由于机器人绝对定位精度相对较低,无法直接满足自动制孔的孔位精度要求。为了提高机器人自动制孔的孔位精度,对机器人绝对定位误差进行了研究。首先,阐述了绝对定位误差的来源和产生过程,并通过理论分析和相关试验,证明了绝对定位误差会对机器人基坐标系的平移分量和姿态变换分量产生不同程度的影响。然后,为了补偿由于基坐标系标定不准确所引起的坐标转换误差,从飞机曲面构造原理角度,提出了一种基于误差Coons曲面函数的补偿方法。制孔试验表明,采用基于误差Coons曲面函数的补偿方法,可以使得坐标转换误差得到有效的补偿。机器人自动制孔的孔位平均位置误差为0.205mm,最大位置误差为0.343mm,满足孔位精度在0.5mm以内的要求,实现了机器人自动化精确制孔。  相似文献   

7.
李宇飞  田威  李波  张楠 《航空学报》2022,(5):109-119
新一代航空航天器大量使用一体化复杂大部件作为主要结构,传统机床难以满足其高质量、高效率、高柔性的加工需求,以工业机器人为载体的加工系统是解决该问题的有效新途径,但面临机器人精度低、刚性差的瓶颈。为提高工业机器人的加工精度,搭建了基于数控系统的机器人铣削系统,提出了关节空间-笛卡尔空间分级精度补偿方法。静载试验结果表明,机器人的重复定位精度由0.154 mm提高到0.039 mm,提高了74.68%;绝对定位精度由1.307 mm提高到0.156 mm,提高了88.06%;轨迹精度由1.346 mm提高到0.181 mm,提高了86.55%,实现了点位与轨迹精度的在线实时补偿。铣削试验结果表明,复合材料舱段铣削精度达到0.22 mm,表面粗糙度优于Ra4.8,机器人铣削系统能够满足航空航天零部件的加工精度要求。  相似文献   

8.
针对飞机自动化装配中对机器人自动钻铆系统设备的控制要求,设计一套以工业机器人为载体,基于Beckhoff控制系统的自动钻铆设备。该控制系统以现场总线的方式,将工业机器人、扩展地轨、多功能末端执行器、刀库以及其他附属设备通过Beckhoff的核心控制软件联系在一起,实现对加工现场的实时控制。并通过一系列的精度补偿措施在多个环节对误差进行修正补偿以提高精度。试验表明,该套系统可达到末端制孔定位精度±0.5mm,垂直精度±0.3°,孔径精度H8,锪窝深度精度±0.01mm。  相似文献   

9.
针对飞机狭窄空间装配工作量大且制孔质量及精度要求高等难题,提出一种面向飞机狭窄空间的双机器人引导–协同作业智能控制技术。研究双机器人轨迹规划以及协同离线仿真、机器人协作视觉伺服控制补偿、可快换的多功能末端执行器设计关键技术,在保证机器人系统与工件的安全作业时,完成目标孔位的加工,以提高装配的精度,降低装配空间的占用,为进气道性能设计提供支撑。试验表明,通过视觉伺服控制补偿,机器人的绝对定位误差降至±0.1 mm以内。  相似文献   

10.
现场环境下工业机器人连续作业运行容易导致定位漂移问题,利用外部高精度测量系统获取其末端执行器精确三维位置信息是机器人绝对定位误差的有效补偿方式.针对误差补偿三维测量高效率、高精度、高适应性要求,提出了一种基于工作空间测量定位系统的工业机器人精度补偿方法.利用测量定位系统的动态特性,设计了针对机器人工作轨迹空间的网格划分...  相似文献   

11.
将工业机器人用于飞机的自动化装配有着很高的定位精度要求,对六自由度KUKA机器人的定位精度补偿方法进行了研究,该方法通过建立机器人运动学误差模型,以Levenberg-Marquardt阻尼迭代最小二乘法求出适合机器人标定空间的各参数误差最优值并以Kuka机器人为实验平台进行试验验证。经过补偿后,标定空间内机器人的绝对定位精度得到极大改善,可以满足飞机自动化装配的精度要求。  相似文献   

12.
大臂展空间机械臂,由于臂杆的几何参数误差及柔性等因素将会导致其末端定位产生很大误差,然而在某些空间作业时对机械臂末端定位精度要求较高,为了获得其准确的运动学参数,提出了一种线性标定机器人运动学参数的简便方法。以一个7自由度空间机械臂为研究对象,采用D-H建模方法建立了机器人运动学模型,基于该模型建立了机器人运动学误差模型,最后通过计算机器人末端的位姿误差,标定了该机器人的运动学参数。仿真实验表明该标定方法有较高的精度,并且该方法操作简单、便于实际应用。  相似文献   

13.
针对飞机大型复合材料机身壁板尺寸大、曲率大、外形偏差不易控制等装配工艺特点,提出了一种基于多机器人协同的复合材料机身壁板装配调姿控形方法。实现了各机器人末端夹持单元预定位,并建立了多机器人柔性装配工装的全局运动学模型;通过多机器人主从协同运动实现复合材料机身壁板的调姿定位,分析了协同运动误差;构建了壁板形状控制点偏差与机器人运动量的变换关系,通过机器人的运动实现了复合材料机身壁板的形状控制。最后,对所提出的方法进行了应用实验验证,结果表明采用主从协同运动的调姿方法,调姿定位精度优于0.08 mm。形状调控后复合材料机身壁板形状精度可达0.6 mm,证明了该方法的可行性和有效性。  相似文献   

14.
当今工业机器人加工技术越来越多地被应用于航空、航天、高铁、船舶等高端制造领域中的制孔、铆接、铣削、磨削等工艺。然而,由于工业机器人定位精度低限制了其自身发展及其在高精制造业中的进一步应用;因此,开展机器人精度补偿技术研究对提高机器人定位精度十分重要。对工业机器人精度补偿技术的研究现状进行综述,分析了机器人的定位误差来源,梳理了当前在提高机器人定位精度方面的研究方法和技术以及目前的应用进展,总结了未来工业机器人定位精度提升方法的趋势,可为工业机器人在制造业的应用发展提供指导。  相似文献   

15.
针对机器人卫星装配阶段舱板与主框架装配精度低、装配干涉力过大的问题,提出了一种融合视觉与力觉的卫星装配误差在线测量与补偿方法。利用视觉检测装置建立卫星舱板与主框架装配误差在线测量系统,并完成了双目标定、机器人手眼标定、其他部件相对位姿的标定,提出了卫星舱板与主框架装配误差补偿控制方法,实现了装配误差实时测量与精确补偿;同时,通过力觉检测装置完成了机器人末端负载辨识与重力补偿,实时测量卫星舱板与主框架装配干涉力,实现了卫星柔性装配。试验结果表明,采用融合视觉与力觉的卫星装配误差在线测量与补偿方法后,卫星舱板与主框架装配误差控制在0.2 mm以内,装配干涉力小于50 N,满足了卫星装配的精度需求,证明本文所提方法的有效性和稳定性。  相似文献   

16.
王龙飞  张丽艳  叶南 《航空学报》2019,40(10):422871-422871
针对工业机器人应用于飞机零部件自动钻孔时各项误差累积造成制孔精度差的问题,提出一种利用单应关系计算机器人驱动坐标三维偏差,以在线补偿机器人制孔精度的方法。首先利用外部测量设备建立机器人制孔系统中各坐标系关系;在标定阶段,通过以一定倾斜角度固联于机器人末端的相机拍摄一幅安装于制孔工作平面上与刀轴正对的平面标定板图像,并据此完成基于单应变换的手-眼关系标定;在实际制孔过程中,机器人在测距传感器及相机的辅助下,从基准孔理论坐标对应的姿态,不断调整至基准孔正上方理想位置,通过手-眼关系计算基准孔实际位置对应的机器人驱动坐标,然后根据一组基准孔的机器人三维驱动误差,计算三维驱动误差变换矩阵,据此获得这组基准孔邻域范围内各待钻孔的机器人驱动坐标补偿量,从而实现待钻孔定位误差补偿。以飞机结构实验件为对象进行了模拟制孔验证,实验结果表明,补偿前待钻孔三维综合定位误差和法向误差测量值范围分别为2.28~2.85 mm和2.09°~3.93°,平均为2.55 mm和3.30°,补偿后制孔最大误差分别不超过0.30 mm和0.21°,满足自动制孔位置精度要求。  相似文献   

17.
针对传统空间遥操作控制方法灵活性不足的问题,提出了一种ATSMS(Adaptive Terminal Sliding Mode Similarity,自适应终端滑模相似性)控制方法。该方法在利用动作捕捉技术采集操作者手臂末端位置和关节角数据的基础上,设计了ATSM(Adaptive Terminal Sliding Mode,自适应终端滑模)控制器,精确控制空间机器人的末端位置;还设计了钳位速度,控制机器人关节构型趋向于操作者手臂关节构型,且不会影响末端位置的精确控制。数值仿真和地面实验结果表明,ATSMS控制方法可以实现操作者对空间机器人末端位置的精确控制和关节空间的灵活控制,末端位置控制精度约为97.58%,操作者手臂与机器人关节空间平均相似度高达99.06%。因此,ATSMS控制方法提高了空间遥操作的灵活性,可以应用于未来更为精细和复杂的空间遥操作任务中。  相似文献   

18.
描述了一种利用机器视觉技术的工业机器人定位系统,可用于飞机小型零部件的装配定位和复合材料胶结部件的加压保压等作业。系统利用双目相机对目标工件上的反射靶标进行测量,获取机械臂末端与工件间的相对位姿关系,系统控制模块根据位姿反馈驱动末端进行位姿调整,实现末端对工件的精确定位。利用激光跟踪仪对位姿偏差进行测量,结果表明位置误差为0.11mm,姿态误差为0.04°,在定位精度和稳定性方面均能满足实际应用需求。  相似文献   

19.
针对现有工业机器人智能装备建模感知监测精度缺失,依靠理论参数建模精度低等问题,本文以工业机器人铣削系统为研究对象,构建了高精度光栅尺实时测量机器人关节转角的数字孪生监测系统,避免了齿轮间隙、编码器丢码等关节转角误差对数字孪生建模准确度的影响;根据MD–H运动学建模方法建立了数字孪生驱动模型,采用L–M算法对工业机器人建模参数进行辨识修正,减少了机器人数字孪生模型中几何误差的影响;开发了数字孪生交互系统平台,用以监测、控制物理空间的工业机器人铣削系统的作业运动。利用辨识后的机器人关节参数构建的数字孪生模型,使得工业机器人铣削系统运动点位的建模精度从±1.6905 mm提高到了±0.3304 mm,提高了4.12倍,表明本文针对工业机器人数字孪生建模方法的正确性和建模参数辨识方法对建模精度补偿的可行性。  相似文献   

20.
基于阻抗内环的新型力外环控制策略   总被引:1,自引:1,他引:0  
蒋再男  刘宏  黄剑斌  张国亮 《航空学报》2009,30(8):1515-1520
对于空间装配等与环境进行交互的任务,迫切要求空间机器人具有力控制的能力。利用机器人的关节力矩传感器,提出了一种新型的基于阻抗内环的力外环控制策略。在该方法中,内环采用阻抗控制代替传统的位置控制。阻抗控制内环使机器人具有一定的柔顺性,力外环通过期望力与实际力的误差对内环的参考轨迹进行修正,实现了机器人的力跟踪控制。另外,为了验证利用关节力矩传感器间接测量末端接触力的效果,机器人末端安装了一个高精度的JR3腕力传感器用来直接测量实际接触力。在基于位置内环和阻抗内环的力外环控制方式下,进行了机器人接触刚度变化较大环境(海绵、泡沫和铁块)的力跟踪实验。实验表明,当环境刚度变化较大时,相对于传统的力外环方法,本文提出的方法能够实现稳定的力跟踪性能。尤其对于铁块这种刚度很大的环境,该方法的有效性更加明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号