首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对利用基于部件特性的起动模型预测发动机起动过程时精度较低的问题,通过建立起动模型迭代求解方程研究了起 动模型计算方法。基于燃烧效率修正系数、吸放热模型换热系数、附加损失修正系数,匹配发动机起动关键参数,研究了模型修正 方法;基于发动机部件特性的起动模型,结合地面起动数据修正,实现了模型计算数据与试验数据基本一致,并验证了起动模型修 正的有效性。利用该模型进行空中起动预测,并将模型预测结果与试验结果进行了对比。结果表明:起动试验得到的压气机共同 工作线、转子加速率与模型修正结果比较吻合,涡轮出口排气温度差异合理。起动模型修正方法可以高效支撑高空起动试验的开 展,在空中起动试验包线边界工况点上,起动试验能够一次成功,降低试验风险和试验成本。  相似文献   

2.
研究了基于部件特性修正的航空发动机稳态性能模型修正方法,并通过对部件特性的研究总结了部件特性修正因子选择原则。以此为基础,提出了基于多状态试验数据的发动机性能模型修正方法,并采用双轴涡扇发动机地面试验节流特性数据对稳态性能模型进行修正。结果表明,采用单个试验状态数据修正后的稳态性能模型不能完全满足工程使用要求,使用基于多状态试验数据修正后的节流特性转速范围内模型计算精度与修正前相比有很大提高,验证了该方法的有效性和实用性。  相似文献   

3.
为了实现研发阶段涡扇发动机整机试验数据的快速评估和模型自适应,提出一种发动机模型自适应方法。该方法以整机试验数据为输入,结合气动热力过程约束方程和发动机整机匹配约束条件,重构出各部件的性能参数。文中提出了按照高压涡轮导向器喉部流通能力确定核心机流量的方法,并以载荷系数为媒介实现叶轮机械部件参数修正计算,完成了小涵道比涡扇发动机的自适应建模计算。计算结果表明,17个测量参数与计算结果完全一致,该方法完成单个状态点自适应计算的平均时间约为1.44ms,主要部件特性的修正系数在0.95~1.05。采用该方法计算的部件特性参数自适应修正系数可为发动机性能调试和故障诊断提供依据。  相似文献   

4.
随着航空发动机先进噪声控制技术的使用,机体噪声已经成为飞机着陆阶段的主要声源。在民用飞机进场着陆与起飞过程中增升装置和起落架的气动噪声是机体噪声最强声源。本文研究了一种基于物理机制的增升装置气动噪声预测方法,编制了增升装置气动噪声快速预测程序,修正了增升装置气动噪声预估模型,采用国际公开的文献和试验数据与气动噪声快速预测程序计算结果进行对比。编制气动噪声快速预测程序为评估飞机概念设计阶段的部件噪声级提供了工程实用工具。  相似文献   

5.
飞机起落架气动噪声特性仿真与试验   总被引:1,自引:0,他引:1  
龙双丽  聂宏  薛彩军  许鑫 《航空学报》2012,33(6):1002-1013
 对某型飞机前起落架的气动噪声特性进行了数值仿真分析和声学风洞试验研究。在典型飞机着陆速度下,采用分离涡(DES)方法模拟起落架周围非定常湍流流场,通过涡声理论计算声源的强度和位置,并利用FW-H(Ffowcs-Williams/Hawkings)方程积分外推法求解出不同部件及其组合件产生的声场,分析其噪声的产生机制、频谱特性及远场指向特性,同时评估各部件对总噪声的贡献量。在声学风洞中对轮胎和轮叉组合件进行气动声学试验,借助麦克风测量获得了噪声的频谱特性。基于部件固体表面积分计算的仿真结果与试验结果在声学远场条件下吻合较好。仿真结果表明:起落架气动噪声是钝体绕流噪声和空腔噪声的叠加,呈现宽频噪声的特性。强度最大的声源主要分布在起落架各部件的固体表面;轮胎噪声对总噪声的贡献最大,其次是轮叉噪声,支柱噪声对总噪声贡献最小。各部件噪声和总噪声均具有偶极子声源的辐射特性。空间可穿透积分面计算的声压级结果比固体表面计算的声压级结果大5 dB左右。该研究结果为低噪声起落架设计提供了一定的参考。  相似文献   

6.
介绍了某型航空活塞发动机仿真模型的建立方法,建立了带有一级增压器的某型航空活塞发动机仿真模型,并进行了该发动机的地面特性的仿真计算,计算结果与试验结果符合得很好.在此基础上进行了该发动机高空特性的仿真计算,仿真结果与飞行试验数据较好地吻合,能够满足工程使用要求.   相似文献   

7.
航空发动机自适应建模技术研究   总被引:4,自引:2,他引:2  
本文介绍了航空发动机自适应建模方法,并根据某型发动机高空试验实测数据对该型发动机数学模型及其部件特性进行了自适应修正,修正后的发动机模型计算结果与实测结果十分吻合,证明利用本文所介绍的方法可获得更为准确的发动机数学模型  相似文献   

8.
以某型飞机前起落架为研究对象,通过气动声学风洞试验研究缓冲支柱及扭力臂组合件的气动噪声产生机制、声源特性和影响因素。根据所得数据绘制了噪声频谱特性曲线。通过改变扭力臂的位置,分析了扭力臂对起落架噪声的影响。试验结果表明:缓冲支柱及扭力臂结构件的气动噪声包含钝体绕流噪声和干扰噪声,主要噪声源为偶极子声源,且噪声场具有一定的指向性;扭力臂在缓冲支柱后时总声压级低于扭力臂在前时的总声压级。试验结果可作为起落架低噪声结构优化设计的基础。  相似文献   

9.
涡轮发动机部件特性自适应模型的确定方法   总被引:4,自引:1,他引:4       下载免费PDF全文
针对现有航空涡轮发动机部件特性自适应模型中存在的不足,提出了合理的解决方法:根据测量参数合理选择部件特性修正因子;使用部件特性删除法求解部件特性修正因子;部件特性修正因子的数值拟合方法。采取这些改进措施后,使得现有航空涡轮发动机部件特性自适应模型得到改善。计算结果与两种型号的涡喷发动机的试验数据对比表明本文的改进方法合理。  相似文献   

10.
针对燃气涡轮发动机部件特性不匹配造成的模型计算参数与实际试车参数之间的误差问题,提出一种基于特性数据的 燃气涡轮发动机部件特性修正方法。通过变缩放参考中心依次对设计点、慢车点进行整体修正,实现特性图在整个工况范围内的 大致覆盖。通过局部修正非设计点所在的由相邻等转速线和β线所确定矩形域的特性数据,并采用插值法和拟合椭圆曲线法对 等转速线的其他数据点进行补充修正,得到与试车数据匹配的特性图。以涡扇发动机为研究对象进行仿真验证,结果表明:所提 出的特性修正方法能准确、快速地对发动机部件特性进行修正,与试车数据相比,修正后的模型各稳态点误差精度均在1.5%以 内,满足工程精度需求,可用于发动机控制系统研究。  相似文献   

11.
杨阳  魏旭星  李密 《推进技术》2022,43(9):29-35
为了研究小型中涵道比分排涡扇发动机装机性能,建立了基于燃气发生器法的性能计算模型。由CFD数值模拟计算喷管特性,由发动机地面台架试验及针对小型中涵道比的特点发展的修正方法获取内外涵喷管进口总压和总温的修正系数曲线,经高空模拟台试验验证,发动机最大状态下的推力计算误差≤0.5%。再基于飞行试验测试数据,计算得到发动机在装机条件下的空气流量与飞行推力,与发动机设计厂家的模型计算结果相比,发动机各状态下推力最大误差≤1.3%,流量最大误差≤2.5%。结果表明:发展的性能模型修正方法适用于小型中等涵道比涡扇发动机的装机性能确定;同时修正中等涵道比分排发动机的内外涵喷管进口压力可提高模型推力计算精度;同时修正小流量分排发动机内外涵喷管进口温度可提高流量计算精度。  相似文献   

12.
航空发动机部件特性修正技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统部件特性修正方法未考虑发动机多状态导致修正精度不高的问题,提出了1种基于粒子群优化和滑动最小二乘法的某型发动机部件特性修正方法。该方法利用粒子群优化算法分别求得在发动机不同状态下的修正系数,并以这些系数为基础,采用滑动最小二乘方法拟合修正系数曲面,从系数曲面上获取原有部件特性图上各点对应的修正系数,从而得到修正特性。试验结果表明:该方法克服了传统方法的不足,提高了特性修正精度,为开展单机监控和视情维修提供准确的部件数据基础。  相似文献   

13.
为了获取特定巡航工况下飞机外表面湍流边界层噪声以及发动机噪声的频谱和声压级,在机体外表面安装表面声压传 感器进行测量,根据传感器数据之间的相干关系,采用湍流边界层噪声分离技术将湍流边界层噪声与发动机噪声从总的声载荷中 分离出来。采用Robertson模型计算与飞行试验相同的巡航状态下湍流边界层噪声频谱,并与飞行试验结果进行对比。结果表 明:在巡航状态下,对于机体外表面总的声载荷,湍流边界层噪声的贡献量大于发动机噪声的;在中心频率为20~10000 Hz时,采用 Robertson模型得到的湍流边界层噪声频谱与飞行试验结果的1/3倍频程谱曲线趋势较为吻合,总声压级相差约2 dB。试飞结果验 证了该噪声试验及分离技术具有良好的应用效果。  相似文献   

14.
针对型号研制初期产品缺乏试验、动力学识别误差较大的问题,采用一种经修正的简化模型计算发动机动特性。首先,使用多类型有限元单元进行整机刚度等效简化建模及单元耦合,计算得到喷管延伸段的结构模态特性;然后,对比喷管延伸段简化模型、全三维模型与振动台模态试验结果,以100 Hz内主要模态频率为优化目标,使用多目标遗传优化算法对简化模型进行修正重构;最后,计算重建后整机模型动态特性,得到发动机模态特性与各部件位置谐响应分布规律。该模型修正方法在型号研制初期不具备试验条件情况下,能通过多轮模型修正得到较为准确的整机动特性。  相似文献   

15.
为了研究非均匀流场中航空发动机喷流噪声特性,满足未来的航空器噪声适航要求,采用计算流体力学(CFD)和计算航空声学(CAA)相结合的混合数值算法,对大涵道比发动机喷管的简化缩尺模型进行气动噪声仿真计算。采用大涡模拟(LES)计算喷管的瞬态喷流流场;在流场计算的基础上使用Mohring声类比进行声源提取,将时均流场插值到声学网格作为背景流,结合有限元和无限元方法对喷流噪声近场以及远场的辐射特性进行数值计算及分析,并通过单通道锯齿形喷管试验验证数值计算方法的可行性。数值结果表明:发动机喷流噪声主要是由内外涵剪切层内的涡环破碎产生的大尺度涡而形成的,噪声辐射峰值主要集中在低频范围内,随着频率升高,各方向角的声压级都在降低,在1000~2500 Hz,从125 dB快速降低到105 dB,之后衰减速度变缓,到100 dB趋于稳定。数值计算方法精确度高,最大计算误差为1.97%。为发动机噪声适航提供了一种噪声预测方法。  相似文献   

16.
哈圣  徐昊  唐震  朱赤洲 《航空发动机》2022,48(5):173-179
因航空发动机的工作环境及工作特性所致,其稳态试验数据常伴有噪声干扰,对稳态值计算结果的准确性造成影响。在对稳态数据进行正态性检验后,利用稳态数据来源的正态特性,以及利用混合模型对数据的良好回归特性,基于高斯混合模型对稳态数据进行筛选分类。依托发动机稳态数据分布形式的相近性与数据本身的统计特性,来确定稳态数据特征值的提取方法。在对发动机稳态数据进行数据筛选以及对比不同稳态数据片段后,验证模型方法的数据降噪效果以及稳态数据特征值计算结果与同一稳定工作状态数据片段的选取不相关性。结果表明:从仿真数据的筛选结果以及不同稳态数据片段的验证结果可知,该方法具有较强的稳定性,可有效筛选出发动机稳态点数据,并准确计算出发动机稳态值,一般收敛结果相对误差在0.2%以内。  相似文献   

17.
基于模型辨识的发动机部件特性修正研究   总被引:3,自引:1,他引:3  
在发动机的总体性能研究中,发动机部件特性图的准确程度对总体性能计算结果有明显的影响.研究表明,部件特性数据的偏差,尤其是风扇、压气机及涡轮等部件特性的偏差会使发动机总体性能计算结果出现很大的偏差,与实际性能不符.本文采用变分加权最小二乘法对试验数据进行模型辨识分析,充分利用发动机整机测量的试验数据对发动机部件特性进行修正,该修正可反馈各部件实际特性信息,可为各部件分析及完善设计提供参考和依据.  相似文献   

18.
针对某型涡扇发动机厂内排气温度换算值验收合格而外场地面检查实测值偶有不合格的问题,分析了只考虑大气温度单一因素的排气温度换算方法的缺陷。提出了一种综合考虑非标准大气和调节规律使用因素的换算方法,建立了数学模型,计算得到了非标准大气的修正系数和调节规律的修正系数,并经试车试验验证。结果表明:提出的考虑使用因素的换算方法符合发动机的实际使用条件,所获得的修正系数与试车试验数据的相对误差小于1.3%,有效解决了排气温度厂内验收合格而外场地面开车不合格的问题。   相似文献   

19.
某型涡扇发动机尾喷管流动特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
针对某型双涵道分开排气涡扇发动机尾喷管模型的流动特性进行了数值计算研究和试验验证。利用NASA典型尾喷管模型的推力系数对比研究结果验证了数值方法的可行性,采用验证后的数值方法获得了不同飞行条件下和发动机工作状态下某型发动机尾喷管模型内、外涵道的流量系数和推力系数数据及其变化规律,并将数值计算结果与该型发动机在相同工况下的地面台架试验数据进行对比。结果表明:在试验工况全范围内,发动机进口空气流量的计算值与试验值的最大偏差为1.8%,总推力的计算值与试验值的最大偏差不超过±0.5%。  相似文献   

20.
降低噪声是民用飞机适航性的要求,降低飞机噪声必须控制飞机的主要噪声源发动机噪声向外辐射。飞机的主要噪声源为发动机,对于高速发动机,离散噪声占主导地位,在管道内以模态形式传播。对于超声速风扇,除了离散噪声,还有叶片与超声速来流相互作用形成的激波噪声,主要分布在叶片轴频率及其谐波处。本文主要通过在风扇试验件上开展声学测试获得声源的模态信息和管道内激波噪声轴向衰减特性,用于验证声模态和激波噪声分析工具。试验是在几种不同风扇工况下进行的,用布置在进气道中轴向不同位置的两圈传声器进行测量,周向各均布40个传声器,得到周向模态信息。在同一周向位置沿轴向布置10个传声器,用于获得激波轴向衰减。为能在试验中准确地量化各个测量值,并真正反映风扇管道声源特征,需要规范频谱处理的方法以及对高速风扇管道的声源有深刻的了解。本文阐述了管道声模态的基本理论,对管道内声模态的测量值进行了分析,最后跟数值结果进行对比,得到了较一致的结果。根据经验模型,激波主要分布在1BPF以内的轴频处,对试验数据展开分析,获得激波声功率级,与数值计算结果进行了对比分析,发现了试验中存在的问题,同时分析了幅值差异产生的原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号