共查询到16条相似文献,搜索用时 78 毫秒
1.
低速翼型分离流动的等离子体主动控制研究 总被引:3,自引:0,他引:3
为了研究等离子体激励器的放电形式及其诱导气流的规律,以及翼型迎角、自由来流速度分别对翼型流动分离抑制效果的影响。在低速、低雷诺数条件下利用介质阻挡放电等离子体激励器对NACA0015翼型进行了主动流动控制研究。结果表明:介质阻挡放电的形式为丝状放电;等离子体激励器诱导气流的方向由裸露电极指向覆盖电极,由电极的布置方式决定,与接线方式无关;当来流速度为25m/s,雷诺数为2.03×10^5时,等离子体气动激励可以有效地抑制翼型吸力面的流动分离,翼型最大升力系数增大约为9.7%,翼型l临界失速迎角由17.5°增大到20.5°;翼型失速延迟的真正原因并非单纯的气流加速;等离子体激励器的作用效果随着来流速度的提高而减弱,研究非定常激励或等离子体激励器与流场之间的耦合效应,也许更加具有潜力。 相似文献
2.
等离子体对翼型流动分离控制历程的PIV试验研究 总被引:2,自引:0,他引:2
采用粒子图像测速(Particle Image Velocimetry,PIV)技术,研究了介质阻挡放电等离子体激励对NA—CA0015翼型表面流动分离的控制特性及控制效果随时间历程的变化规律。结果表明,激励电压存在一个阈值,当电压小于阈值时,控制无效或效果不明显;当电压接近阈值时,控制表现出不稳定性并最终趋于稳定;当电压大于阈值时,控制效果稳定且显著,气流能够很好地重附在翼型表面。 相似文献
3.
4.
深入认识翼型动态失速,结合有效流动控制手段,对解决直升机、风力机桨叶等动态失速引起的高阻力、大低头力矩等气动问题具有重要意义。本文首先介绍了翼型动态失速的流场特点和危害,进而分析了缩减频率、雷诺数、马赫数以及翼型型面等参数对动态失速的影响,并在此基础上总结了常见的动态失速流动控制方法及其研究进展。等离子体气动激励易于产生快速、可控的宽频带气动激励,在动态失速控制领域具有潜力,本文着重介绍了等离子体气动激励动态失速控制的概念和流动控制原理,总结了近来年等离子体激励在翼型动态失速控制上的进展。 相似文献
5.
为了提高等离子体的流动控制能力,在常规大气环境,来流风速分别为20m/s、30m/s、40m/s条件下进行了介质阻挡放电抑制NACA0015翼型流动分离实验研究。结果表明:等离子体能有效的抑制分离,实现增升减阻,但随着来流风速增加,有效控制的起始和终止攻角均变大,攻角区域却逐渐变小;可以通过在翼型分离点附近布置等离子体激励器,在允许的范围内尽量提高输入功率,使控制效果达到最佳。 相似文献
6.
等离子体气动激励抑制翼型失速分离的仿真研究 总被引:3,自引:4,他引:3
通过求解表面放电的二维流体体力模型,建立了翼型等离子体流动控制的数学模型,得到等离子体气动激励诱导的体力和热量分布,与Navier-Stokes方程耦合求解.进行了低雷诺数条件下,等离子体气动激励抑制NACA0009翼型失速分离的数值仿真研究,研究了等离子体激励的强度、激励电极数目和激励位置对流动分离抑制和翼型升阻特性的影响.在雷诺数为58000、攻角为24°的情况下,施加等离子体激励后,升力系数由0.7449增大到1.2404;阻力系数由0.4012减小到0.3503. 相似文献
7.
8.
9.
为研究纳秒介质阻挡放电(NSDBD)等离子体控制翼型流动分离的物理机理,采用已建立的NSDBD唯象学模型耦合非定常Navier-Stokes方程模拟纳秒等离子体对流场的作用。使用非定常雷诺平均NavierStokes方程(URANS)和大涡模拟(LES)两种求解方法,研究纳秒等离子体激励对NACA0015翼型流动分离控制。结果表明:NSDBD等离子体激励促使边界层提前转捩,转捩对控制流动分离起重要作用;NSDBD激励开始时在翼型前缘形成展向涡,展向涡促使分离剪切层失稳并最终进入尾迹,展向涡贴近壁面运动,将外区的高能气流带入近壁区,使上翼面流场结构发生变化,然后翼型前缘流动提前转捩促使流动经过一个小层流分离泡后发生湍流再附,最终在上翼面形成稳定的附着流动。 相似文献
10.
测力法在翼型动态失速试验研究中的应用 总被引:3,自引:0,他引:3
本文就利用测力法对NACA0012翼型在振荡条件下的动态失速特性进行的测试作了简要介绍,阐述了测力法在翼型动态实验研究中的些特殊问题及其解决途径,并比较了两种实验研究方法的优缺点。 相似文献
11.
12.
等离子体气动激励抑制机翼失速分离的实验 总被引:1,自引:0,他引:1
进行了等离子体气动激励抑制机翼失速分离的风洞实验,研究了等离子体气动激励频率、电压、占空比和激励位置等对流动控制效果的影响.研究表明:在来流速度35m/s时,等离子体气动激励可以有效地抑制机翼大攻角下吸力面的流动分离,将机翼临界失速迎角由17°提高到19°;施加激励后,机翼最大升力系数提高了9.45%,阻力系数减小20.9%;激励频率在200Hz时,控制效果最好,对应的量纲一激励频率为1;迎角越大,流动分离越严重,需要更大的激励电压才能够有效抑制流动分离;最佳激励位置在流动分离起始点的前缘;在流动控制效果相当时,减小占空比可以降低能耗. 相似文献
13.
14.
OA212翼型主动流动控制的数值模拟研究 总被引:1,自引:0,他引:1
采用数值模拟的方法,探讨了基于零质量射流的主动流动控制技术对OA212旋翼翼型动态失速的控制效果和控制特性.以积分形式雷诺平均Navier-Stokes(N-S)方程为控制方程,采用格心有限体积法进行求解.空间离散采用AUSM~+-up格式,时间推进采用含牛顿型LU-SGS子迭代的全隐式双时间法,且引入了预处理方法和多重网格方法加速收敛.通过在喷口上施加非定常边界条件来模拟射流对翼型绕流的影响.研究了不同类型射流、不同位置射流以及不同控制参数(频率、相位、偏角、动量系数等)对动态失速控制效果的影响.研究表明:零质量射流和传统的定常射流均可减小动态失速迟滞环的回线面积,但在提高最大升力方面零质量射流明显优于定常射流;在12%c和62%c处施加组合零质量射流的控制效果最为明显. 相似文献
15.
等离子体激励抑制翼型失速分离的实验研究 总被引:10,自引:2,他引:10
进行了低速、低雷诺数条件下等离子体激励抑制NACA0015翼型失速分离的实验研究,研究了等离子体激励电压、激励电极数目和激励位置对流动分离抑制效果的影响.在翼型吸力面敷设不对称电极布局的等离子体激励器.在来流速度为4.27m/s,雷诺数为4.96×104的情况下,未施加等离子体激励时,从攻角为9°起翼型吸力面发生显著的前缘流动分离;施加等离子体激励后,流动分离在攻角小于26°的情况下均能很好地重附到翼型吸力面表面.实验表明,流动分离越严重,对等离子体激励的强度要求也越高,等离子体激励的电压和电极组数也必须相应增大;给定的流动分离状态下,等离子体激励的电压和电极组数存在一个阈值;等离子体激励的最佳位置在流动分离起始点的前缘;雷诺数增大后,流动分离更难抑制. 相似文献
16.
动态失速控制对于提高翼型气动特性具有重要意义。采用联合射流方法对翼型俯仰动态失速控制进行数值模拟,完成两方面的研究:一是射流关闭时射流通道对动态失速特性的影响,二是射流开启时不同射流动量系数对动态失速控制的影响和分析。结果表明:射流关闭时,射流通道的存在对翼型上仰过程中附着流阶段的气动特性产生不利影响,使得升力系数明显下降,但是对翼型下俯过程中失速分离流阶段的气动特性影响不明显;射流开启后,动态失速特性得到极大改善,迟滞环面积显著减小,升力增加,阻力减小,且阻力和力矩的峰值显著减小,原基准翼型力矩曲线的负阻尼区域消失。 相似文献