首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Techniques and algorithms to detect and diagnose disorders in plants grown in a controlled environment have been developed. A video camera senses features of plants which are indicative of disorders. Images are calibrated for size and color variations by using calibration templates. Different image segmentation techniques for separating object from background, have been implemented. Plant size and color properties have been investigated, temporal, spectral and spatial variation of leaves were extracted from the segmented images. Neural network and statistical classifiers were used to determine plant condition.  相似文献   

2.
Comprehensive spectroscopic monitoring of plant health and growth in bioregenerative life support system environments is possible using a variety of spectrometric technologies. Absorption spectrometry and atomic emission spectrometry in combination allow for direct, on-line, reagentless monitoring of plant nutrients from nitrate and potassium to micronutrients such as copper and zinc. Fluorometric spectrometry is ideal for the on-line detection, identification and quantification of bacteria and fungi. Liquid Atomic Emission Spectrometry (LAES) is a new form of spectrometry that allows for direct measurement of atomic emission spectra in liquids. An electric arc is generated by a pair of electrodes in the liquid to provide the energy necessary to break molecular bonds and reduce the substance to atomic form. With a fiber probe attached to the electrodes, spectral light can be transmitted to a photodiode array spectrometer for light dispersion and analysis. Ultraviolet (UV) absorption spectrometry is a long-established technology, but applications typically have required specific reagents to produce an analyte-specific absorption. Nitrate and iron nutrients have native UV absorption spectra that have been used to accurately determine nutrient concentrations at the +/- 5% level. Fluorescence detection and characterization of microbes is based upon the native fluorescent signatures of most microbiological species. Spectral and time-resolved fluorometers operating with remote fiber-optic probes will be used for on-line microbial monitoring in plant nutrient streams.  相似文献   

3.
Instrumentation for plant health and growth in space.   总被引:1,自引:0,他引:1  
The present-day plant growth facilities ("greenhouses") for space should be equipped with monitors and controllers of ambient parameters within the chamber because spacecraft environmental variations can be unfavorable to plants. Moreover, little is known about the effects of spaceflight on the greenhouse and rooting media. Lack of information about spaceflight effects on plants necessitates supplying space greenhouses with automatic, non-invasive monitors of, e.g., gas exchange rate, water and nutrient ion uptake, plant mass, temperature and water content of leaves. However, introduction of an environmental or plant sensor into the monitoring system may be reasonable only if it is justified by quantitative evaluation of the influence of a measured parameter on productivity, efficacy of illumination, or some other index of greenhouse efficiency. The multivariate adaptive optimization in terrestrial phytotrons appears to be one of the best methods to assess environmental impacts on crops. Two modifications of greenhouses with the three-dimensional adaptive optimization of crop photosynthetic characteristics include: (1) irradiation, air temperature and carbon dioxide using a modified simplex algorithm; and (2) using irradiation, air temperature, and humidity with sensitivity algorithms with varying frequency of test exposures that have been experimentally developed. As a result, during some stages of plant ontogensis, the photosynthetic productivity of wheat, tomatoes, and Chinese cabbage in these systems was found to increase by a factor of 2-3.  相似文献   

4.
An accurate and continuous monitoring of lakes and inland seas is available since 1993 thanks to the satellite altimetry missions (Topex–Poseidon, GFO, ERS-2, Jason-1, Jason-2 and Envisat). Global data processing of these satellites provides temporal and spatial time series of lakes surface height with a decimetre precision on the whole Earth. The response of water level to regional hydrology is particularly marked for lakes and inland seas in semi-arid regions. A lake data centre is under development at by LEGOS (Laboratoire d’Etude en Géophysique et Océanographie Spatiale) in Toulouse, in coordination with the HYDROLARE project (Headed by SHI: State Hydrological Institute of the Russian Academy of Science). It already provides level variations for about 150 lakes and reservoirs, freely available on the web site (HYDROWEB: http://www.LEGOS.obs-mip.fr/soa/hydrologie/HYDROWEB), and surface-volume variations of about 50 big lakes are also calculated through a combination of various satellite images (Modis, Asar, Landsat, Cbers) and radar altimetry. The final objective is to achieve in 2011 a fully operating data centre based on remote sensing technique and controlled by the in situ infrastructure for the Global Terrestrial Network for Lakes (GTN-L) under the supervision of WMO (World Meteorological Organization) and GCOS (Global Climate Observing System).  相似文献   

5.
口令认证是远程身份认证中实用的方法.分析了一个给出的使用智能卡的口令认证方案的安全性,指出该方案是不安全的:不能抵御并行会话攻击,攻击者可以利用截获的信息生成合法的登陆信息假冒合法用户登陆,并通过认证获得授权,而不需要知道用户口令;不能抵御更改时戳攻击,攻击者可以更改截获信息的时戳,假冒合法用户登陆远程主机或假冒合法远程主机.同时,引入登陆计数器,采用一卡一密,给出了一种改进的使用智能卡的口令认证方案.该方案允许用户自主选择并更改口令,实现了双向认证;能够抵御重放攻击、内部攻击,具备强安全修复性;能够抵御并行会话攻击和更改时戳攻击,具有更好的安全性.  相似文献   

6.
7.
The mechanisms proposed to explain gravity sensing can be divided into two groups, "statolith" and "non-statolith" mechanisms. The traditional estimates of the plausibility of these mechanisms are based on the analysis of the signal-to-noise ratio. The existing data indicate that the problem of plant gravisensing may be related to the general problem of the detection of weak signals in mechanoreceptors. This paper reviews the known mechanisms of plant gravisensing as well as the latest nonlinear stochastic models of mechanoreception in which noise promotes detection and amplification of weak signals. These models based on nonlinear stochastic phenomena may be used to explain plant gravisensing, if the cell is considered a dynamic, spatially distributed system of active intracellular cytoskeletal networks and mechanosensitive proteins.  相似文献   

8.
Rotation at 4, 10, 50 and 100 rpm on a horizontal clinostat and in microgravity exerts limited effects on the morphogenesis of lettuce and cress root statocytes and statoliths if compared with the vertical control or 1 g spaceflight reference centrifuge. However, the average distance of statoliths from the distal wall increases. The pattern of plastid location of microgravity-grown and that of clino-rotated samples has been determined at 10, 50, and 100 rpm. Experiments on the centrifuge-clinostat and spaceflight centrifuge (acceleration forces of 0.005 to 1 g) revealed that the average statolith location depends on the amplitude of acropetally or basipetally directed mass acceleration. Decreasing the acropetally directed force from 1 g to 0.4 g dislocates statoliths towards the cell center possibly mediated by the elastic forces of the cytoskeleton. In statocytes formed on the clinostat or in microgravity, the majority of statoliths are located at the center of the cell. To force the statoliths from the center of the statocyte towards one of its poles, a threshold mass acceleration of 0.01 g is required. Statocytes with centrally-located statoliths are considerably more effective in transducing a gravistimulus than those with distally-located plastids. The latent time of the graviresponse is shorter and the response itself is enhanced in roots grown on the clinostat compared to vertically grown samples. The early phases of graviperception are independent of root growth conditions since presentation time and g-threshold are similar for roots grown stationary and those on a clinostat. We propose a sequence of events in gravitropic stimulation that considers not only the lateral displacement of statoliths, as predicted by the starch-statolith hypothesis, but also its longitudinal motion, together with differential gravisensitivity of mechanotransducing structures along the lower-most longitudinal cell wall.  相似文献   

9.
The tips of roots and shoots commonly show lateral movements as they grow forwards. These occur as both circumnutations (with long periods and large amplitudes) and micronutations (with short periods and small amplitudes). Their properties are reviewed, with emphasis on roots, and possible ways in which they could be regulated are discussed. The mechanisms could include long-range controls (for circumnutations) that depend on transmissible signals using steps common to gravitropism, and short-range controls (for micronutations) that operate within the elongation zone. The former are a property of the apex as a whole, while the latter may be confined to localized groups of cells. Simulation of nutations is presented with a view to isolating key physiological processes. However, this approach is limited by the current inadequate understanding of the growth mechanisms involved.  相似文献   

10.
Having selected a general definition of a living system, we wonder whether a remote detection of such systems can be made, at least in some cases. Quite fortunately, we find that this seems possible. We describe the present status of missions with this goal.  相似文献   

11.
The debate about whether gravity sensing relies upon statoliths (amyloplasts that sediment) has intensified with recent findings of gravitropism in starchless mutants and of claims of hydrostatic gravity sensing. Starch and significant plastid sedimentation are not necessary for reduced sensing in mutant roots, but plastids might function here if there were a specialized receptor for plastid mass e.g. in the ER. Alternatively, components in addition to amyloplasts might provide mass for sensing. The nucleus is dense and its position is regulated, but no direct data exist for its role in sensing. If the weight of the protoplast functioned in sensing, why would there be specific cytological specializations favoring sedimentation rather than cell mass? Gravity has multiple effects on plants in addition to gravitropism. There may be more than one mechanism of gravity sensing.  相似文献   

12.
Plants were grown under light emitting diode (LED) arrays with different spectral qualities to determine the effects of light on the development of tomato mosaic virus (ToMV) in peppers and powdery mildew on cucumbers. One LED array supplied 100% of the photosynthetic photon flux (PPF) at 660 nm, a second array supplied 90% of the PPF at 660 nm and 10% at 735 nm, and a third array supplied 98% of the PPF at 660 nm with 2% in the blue region (380-500 nm) supplied by blue fluorescent lamps. Control plants were grown under metal halide (MH) lamps. Pepper plants inoculated with ToMV and grown under 660 and 660/735 LED arrays showed marked increases in both the rate and the severity of symptoms as compared to inoculated plants grown under the MH lamp or 660/blue array. Pepper plants grown under the 660/blue array did not develop symptoms as rapidly as inoculated plants grown under the 660 or 660/735 arrays, but they did develop symptoms faster than inoculated plants grown under the MH lamp. The numbers of colonies of powdery mildew per leaf and the size of each colony were greatest on inoculated cucumber plants grown under the MH lamp.  相似文献   

13.
Effects of simulated microgravity and hypergravity on the senescence of oat leaf segments excised from the primary leaves of 8-d-old green seedlings were studied using a 3-dimensional (D) clinostat as a simulator of weightlessness and a centrifuge, respectively. During the incubation with water under 1-g conditions at 25 degrees C in the dark, the loss of chlorophyll of the segments was found dramatically immediately after leaf excision, and leaf color completely turned to yellow after 3-d to 4-d incubation. In this case kinetin (10 micromolar) was effective in retarding senescence. The application of simulated microgravity conditions on a 3-D clinostat enhanced chlorophyll loss in the presence or absence of kinetin. The loss of chlorophyll was also enhanced by hypergravity conditions (ca. 8 to 16 g), but the effect was smaller than that of simulated microgravity conditions on the clinostat. Jasmonates (JAs) and abscisic acid (ABA) promoted senescence under simulated microgravity conditions on the clinostat as well as under 1-g conditions. After 2-d incubation with water or 5-d incubation with kinetin, the endogenous levels of JAs and ABA of the segments kept under simulated microgravity conditions on the clinostat remained higher than those kept under 1-g conditions. These findings suggest that physiological processes of leaf senescence and the dynamics of endogenous plant hormone levels are substantially affected by gravity.  相似文献   

14.
Preparatory experiments for the IML-1 mission using plant protoplasts, were flown on a 14-day flight on Biokosmos 9 in September 1989. Thirty-six hours before launch of the biosatellite, protoplasts were isolated from hypocotyl cells of rapeseed (Brassica napus) and suspension cultures of carrot (Daucus carota). Ultrastructural and fluorescence analysis of cell aggregates from these protoplasts, cultured under microgravity conditions, have been performed. In the flight samples as well as in the ground controls, a portion of the total number of protoplasts regenerated cell walls. The processes of cell differentiation and proliferation under micro-g did not differ significantly from those under normal gravity conditions. However, in micro-g differences were observed in the ultrastructure of some organelles such as plastids and mitochondria. There was also an increase in the frequency of the occurrence of folds formed by the plasmalemma together with an increase in the degree of complexity of these folds. In cell cultures developed under micro-g conditions, the calcium content tends to decrease, compared to the ground control. Different aspects of using isolated protoplasts for clarifying the mechanisms of biological effects of microgravity are discussed.  相似文献   

15.
The fundamental question of gravitational biology is how do plants perceive a gravity. Recent experimental results have demonstrated that Ca second-messenger system has an essential role in induction of graviresponsiveness. Our data, that stimuli of various nature cause a rise of hyaloplasm Ca level revealed by means of pyroantimonate method, as well as complete inhibition of the gravitropism in roots of pea seedlings, provide indirect but consistent evidence of this role of Ca ions. A possible explanation for these results is that they may be due to an unbalanced and undirectional influx of Ca ions in statocytes from cell walls or from intracellular Ca stores, while in the presence of the Earths 1 g vector, this process occurs directionally, along this vector. It is possible that a target for the gravity stimulus is the flux mechanism of Ca to statocytes, including participation of the phosphatidylinositol system and calmodulin. The data that have become available from space flight experiments will be reviewed and an attempt will be made to compare these results with ground-based observations.  相似文献   

16.
An axis clinostat was constructed to create micro and negative gravity also a rotated flat disk was constructed with different rotation rates to give increased gravity, by centrifugal force up to 48 g. Rice seeds were grown on agar in tubes at the constant air temperature of 20 degrees C under an average light condition of 110 micromol/m2/sec(PPF). Humidity was not controlled but was maintained above 90%. Since the tube containers were not large enough for long cultivation, shoot and root growth were observed every 12 hours until the sixth day from seeding. The lengths of shoots and roots for each individual plant were measured on the last day. The stem lengths were increased by microgravity but the root lengths were not. Under the negative gravity, negative orthogeotropism and under microgravity, diageotropism was observed. No significant effect of increased gravity was observed on shoot and root growth.  相似文献   

17.
To obtain basic data on adequate air circulation to enhance plant growth in a closed plant culture system in a controlled ecological life support system (CELSS), an investigation was made of the effects of the air current speed ranging from 0.01 to 1.0 m s-1 on photosynthesis and transpiration in sweetpotato leaves and photosynthesis in tomato seedlings canopies. The gas exchange rates in leaves and canopies were determined by using a chamber method with an infrared gas analyzer. The net photosynthetic rate and the transpiration rate increased significantly as the air current speeds increased from 0.01 to 0.2 m s-1. The transpiration rate increased gradually at air current speeds ranging from 0.2 to 1.0 m s-1 while the net photosynthetic rate was almost constant at air current speeds ranging from 0.5 to 1.0 m s-1. The increase in the net photosynthetic and transpiration rates were strongly dependent on decreased boundary-layer resistances against gas diffusion. The net photosynthetic rate of the plant canopy was doubled by an increased air current speed from 0.1 to 1.0 m s-1 above the plant canopy. The results demonstrate the importance of air movement around plants for enhancing the gas exchange in the leaf, especially in plant canopies in the CELSS.  相似文献   

18.
Among other problems the Institute of Biophysics is working on the development of physiological and fundamental aspects of intensive light cultivation of higher plants. These technologies can be used in life support systems for stationary space station such as a Lunar base, a planetary base or a large orbital station. The source of energy may be the Sun or a nuclear reactor. In certain conditions, such sources of energy allow the use of a very broad range of irradiance of plants, in particular in the light energy range up to 2-3 times the solar energy (up to 100-1200 W/m2 PAR). Our Institute was the first to show that under such a high irradiance, some plants (radish, wheat, for example) can actively photosynthesize and exhibit high productivity on a sowing area basis. These results were later confirmed in the laboratory of Prof. Salisbury (USA).  相似文献   

19.
Information is provided on the applications of remote sensing to regional geological survey and mapping on medium and small scale over recent years in China. The work began from establishing interpretation key for strata, magmatic rocks and regional structures. Preliminary results have been obtained. It is explained through case histories in Sichuan Province and Xinjiang Uygur Autonomous Region. By means of remote sensing the time of compilation has been shortened and the cost was reduced, the accuracy and quality of geological maps was improved, and abundant basic geological data were provided for exploration. In addition, prediction of various ore targets were defined along with new ideas for geological scientific research.  相似文献   

20.
Today, the tools are in our hands to enable us to travel away from our home planet and become citizens of the solar system. Even now, we are seriously beginning to develop the robust infrastructure that will make the 21st century the Century of Space Travel. But this bold step must be taken with due concern for the health, safety and wellbeing of future space explorers. Our long experience with space biomedical research convinces us that, if we are to deal effectively with the medical and biomedical issues of exploration, then dramatic and bold steps are also necessary in this field. We can no longer treat the human body as if it were composed of muscles, bones, heart and brain acting independently. Instead, we must lead the effort to develop a fully integrated view of the body, with all parts connected and fully interacting in a realistic way. This paper will present the status of current (2000) plans by the National Space Biomedical Research Institute to initiate research in this area of integrative physiology and medicine. Specifically, three example projects are discussed as potential stepping stones towards the ultimate goal of producing a digital human. These projects relate to developing a functional model of the human musculoskeletal system and the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号