首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave observations in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfvén waves and particle precipitation related to solar and magnetospheric processes. We review ionospheric processes as well as surface and space weather phenomena that drive the coupling between the troposphere and the ionosphere. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface perturbations and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and to solve inverse problems and outline in a final section a few challenging subjects that are important to advance our understanding of tropospheric-ionospheric coupling.  相似文献   

2.
Key drivers of solar weather and mid-term solar weather are reviewed by considering a selection of relevant physics- and statistics-based scientific models as well as a selection of related prediction models, in order to provide an updated operational scenario for space weather applications. The characteristics and outcomes of the considered scientific and prediction models indicate that they only partially cope with the complex nature of solar activity for the lack of a detailed knowledge of the underlying physics. This is indicated by the fact that, on one hand, scientific models based on chaos theory and non-linear dynamics reproduce better the observed features, and, on the other hand, that prediction models based on statistics and artificial neural networks perform better. To date, the solar weather prediction success at most time and spatial scales is far from being satisfactory, but the forthcoming ground- and space-based high-resolution observations can add fundamental tiles to the modelling and predicting frameworks as well as the application of advanced mathematical approaches in the analysis of diachronic solar observations, that are a must to provide comprehensive and homogeneous data sets.  相似文献   

3.
范颖  何晓峰  范晨  胡小平  吴雪松  韩国良  罗凯鑫 《航空学报》2020,41(9):324263-324263
针对多云天气情况下传统的偏振光定向算法精度下降的问题,提出了一种用于多云天气条件下的大气偏振光定向方法。首先,根据已知信息建立任意一个像素点的偏振光定向模型;然后,基于上一步得到的定向模型,利用随机抽样一致算法筛选出符合要求的内点,并根据筛选出的这些内点得出最符合要求的定向模型;最后,利用选取出的最优的定向模型解算出航向角,实现了基于大气偏振光的定向。通过实际数据证明了该方法的有效性,解算出的航向角误差在少云情况下小于0.5°、多云情况下小于1°。  相似文献   

4.
考虑转捩的跨声速气冷涡轮叶片气热耦合计算   总被引:2,自引:0,他引:2  
为了研究转捩对气热耦合计算的影响,在B-L代数模型与SST(shear stress transport)k-ω二方程模型的基础上,增加了两类基于间歇因子的转捩模型:代数AGS(Abu-Gharmam Shaw)模型与一方程间歇因子输运方程.选取NASA-MARKⅡ跨声速叶片为算例,分别采用全湍流模型与加入转捩的模型进行气热耦合计算.数值计算结果与试验对比表明由于能够预测附面层中的转捩过程,采用转捩模型的耦合计算得到的结果与试验吻合最好,由于在叶片壁面附近的网格较粗,采用间歇因子输运方程的转捩模型计算的结果要逊于采用代数转捩模型的结果.   相似文献   

5.
船载星敏感器测星数据蒙气差实时修正方法   总被引:2,自引:0,他引:2  
针对船载星敏感器安装在航天测量船上而引起的测星数据如何进行蒙气差实时修正问题,在分析船载经纬仪目前使用的蒙气差修正方法和中国天文年历提供的蒙气差修正方法的修正精度的基础上,提出船载星敏感器测星数据的蒙气差实时修正方法,给出蒙气差常数R0和温度变差乘数A的改正量α的计算公式,解决了工程应用上的高精度和实时性问题;同时,在分析大气温度、大气压力对船载星敏感器测星数据蒙气差影响的基础上,提出工程应用中的气象数据采集与使用的具体方案。  相似文献   

6.
This paper studies the response of the middle atmosphere to the 11-year solar cycle. The study is based on numerical simulations with the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), a chemistry climate model that resolves the atmosphere from the Earth’s surface up to about 250 km. Results presented here are obtained in two multi-year time-slice runs for solar maximum and minimum conditions, respectively. The magnitude of the simulated annual and zonal mean stratospheric response in temperature and ozone corresponds well to observations. The dynamical model response is studied for northern hemisphere winter. Here, the zonal mean wind change differs substantially from observations. The statistical significance of the model’s dynamical response is, however, poor for most regions of the atmosphere. Finally, we discuss several issues that render the evaluation of model results with available analyses of observational data of the stratosphere and mesosphere difficult. This includes the possibility that the atmospheric response to solar variability may depend strongly on longitude.  相似文献   

7.
An evaluation of ten turbulence models is made for compressible flows encountered in current aircraft applications. The Baldwin–Lomax and P.D. Thomas algebraic models, the Baldwin–Barth and Spalart–Allmaras one-equation models, five low-Reynolds-number k– models and the Menter SST blended k–/k–ω model are examined. A zonal, upwind, implicit, factored algorithm is used to solve both the mean flow equations and the turbulence model equations for three-dimensional, compressible turbulent flow. Calculations are presented for both internal and external flowfields including a two-stream mixing layer, a supersonic flat-plate boundary layer, a transonic supercritical airfoil, a shock wave/turbulent boundary layer interaction, an ejector nozzle, a highly offset diffuser, and a twin impinging jet flowfield. The influence of two modifications to the production of turbulent kinetic energy for the low-Reynolds-number k– models is evaluated, a vorticity-based strain rate and a production limiter. A compressibility correction for high speed shear layers is also examined. Comparisons of the results of the various turbulence models are made with experimental measurements. Significant differences are observed in the model predictions when applied to the same problem using the same computational mesh and mean flow solver. The algebraic models are unable to capture the physics of these complex flowfields, particularly for the internal flow calculations. The performance of each model is dependent on the application. No universal model is found for all flowfields examined. Each one-equation and two-equation model has specific strengths and weaknesses and the performance of each model is assessed.  相似文献   

8.
Traditionally modeling for space science has concentrated on developing simulations for individual components of the solar terrestrial system. In reality these regions are coupled together. This coupling can be as simple as the driving of the magnetosphere – ionosphere – thermosphere system by the solar wind or as a complicated as the feedback of the ionospheric conductivity and currents on the magnetosphere. As part of the CISM project we are beginning a concentrated effort to compressively model the entire system. This approach includes chains of models. In the first chain physics based numerical models are utilized while in the second chain empirical models are coupled together. The first half of this paper discusses the numerical modeling approach by highlighting the coupling of pairs of regions within the system. In the second section we present results from empirical models which are combined to make long term forecasts of conditions in the geospace environment. It is expected that a validated and reliable forecast model for space weather can be obtained by combining the strongest elements of each chain.  相似文献   

9.
We review important studies in the field of stratosphere-ionosphere coupling, including recent studies of wave motions of planetary waves, atmospheric tides and internal gravity waves in the atmosphere. The interrelation between stratospheric sudden warmings and winter anomaly of radio absorption, a dynamical model of stratospheric sudden warmings and some production mechanisms of intensified electron density in the D region are discussed. Other topics presented are atmospheric tides in the lower thermosphere including dynamo action, and internal gravity waves, by which we intend to explain travelling ionospheric disturbances in the F 2 region and sporadic E layer at midlatitude (wave-enhanced sporadic E). Thermospheric winds are also reviewed and wind effects on the F 2 layer are discussed. For each atmospheric event systematic observations of suitable physical quantities with proper time and spatial intervals are desirable.  相似文献   

10.
The historical development of terrestrial atmospheric electricity is described, from its beginnings with the first observations of the potential gradient to the global electric circuit model proposed by C.T.R. Wilson in the early 20th century. The properties of the terrestrial global circuit are summarised. Concepts originally needed to develop the idea of a global circuit are identified as “central tenets”, for example, the importance of radio science in establishing the conducting upper layer. The central tenets are distinguished from additional findings that merely corroborate, or are explained by, the global circuit model. Using this analysis it is possible to specify which observations are preferable for detecting global circuits in extraterrestrial atmospheres. Schumann resonances, the extremely low frequency signals generated by excitation of the surface-ionosphere cavity by electrical discharges, are identified as the most useful single measurement of electrical activity in a planetary atmosphere.  相似文献   

11.
大气密度模型用于近地卫星定轨预报的比较   总被引:1,自引:0,他引:1  
大气阻力是低轨卫星主要的摄动力,与高层大气密度的变化密切相关。由于目前对高层大气密度变化的机制尚未完全掌握,所使用的各种大气密度模型多属于半经验公式。在这些模型中并没有一种在任何情况下都是最好的,因此,对于特定轨道选择合适的大气密度模型对提高定轨预报的精度是非常重要的。通过对资源2号卫星实测GPS数据的分析计算,比较了常用的8种大气密度模型的定轨预报精度,探讨了预报24h应采用的定轨数据长度和大气密度模型。  相似文献   

12.
Our objective is to review recent advances in ionospheric and thermospheric modeling that aim at supporting space weather services. The emphasis is placed on achievements of European research groups involved in the COST Action 724. Ionospheric and thermospheric modeling on time scales ranging from a few minutes to several days is fundamental for predicting space weather effects on the Earth’s ionosphere and thermosphere. Space weather affects telecommunications, navigation and positioning systems, radars, and technology in space. We start with an overview of the physical effects of space weather on the upper atmosphere and on systems operating at this regime. Recent research on drivers and development of proxies applied to support space weather modeling efforts are presented, with emphasis on solar radiation indices, solar wind drivers and ionospheric indices. The models are discussed in groups corresponding to the physical effects they are dealing with, i.e. bottomside ionospheric effects, trans-ionospheric effects, neutral density and scale height variations, and spectacular space weather effects such as auroral emissions. Another group of models dealing with global circulation are presented here to demonstrate 3D modeling of the space environment. Where possible we present results concerning comparison of the models’ performance belonging to the same group. Finally we give an overview of European systems providing products for the specification and forecasting of space weather effects on the upper atmosphere, which have implemented operational versions of several ionospheric and thermospheric models.  相似文献   

13.
Power augmented ram (PAR) engine is a popular equipment to reduce the requirement of power for takeoff and improve aerodynamic performance. To provide detailed insight into the aerodynamic characteristics of wing-in-ground effect (WIG) craft with PAR engine, numerical simulations are carried out on WIG craft models in cruise. Simplified engine models are applied to the simulations. Two cruise modes for PAR engine are considered. The aerodynamic characteristics of the WIG craft and other features are studied. Comparisons with WIG craft model without PAR show that shutoff of PAR engine results in an increase in drag and less change in lift. Accordingly for the work of PAR engine, the air flow blown from the engine accelerates the flow around the upper surface and a high-speed attached flow near the trailing edge is recorded. With the schemed PAR flow, more suction force is realized and the flow features over the wing vary noticeably. It is also shown that the Coanda effect, provided with an attached flow, introduces an appropriate and practical flow mode for WIG craft with PAR engine in cruise. The results refresh our understanding on aerodynamic characteristics of WIG craft.  相似文献   

14.
The two classes of outer planets, Gas Giants and Ice Giants, have distinctly different global circulation patterns and internal structure. Ongoing ground-based observations of the Ice Giants provide clues to better understanding and Galileo and Cassini data will generate constraints for Gas Giant modeling. The composition below the cloud levels, the depths to which the winds penetrate and the processes that sustain the zonal winds and weather systems are not understood. Basic questions concerning the structure, composition and atmospheric dynamics that are sustained on the four giants could be answered by a combination of orbiters and probes. Future missions that could answer these questions are not currently under development.  相似文献   

15.
载人航天轨道大气密度模式修正研究   总被引:1,自引:0,他引:1  
热层大气密度模式的误差,是影响载人航天定轨精度的关键因素.分析载人航天工程所用Jacchia、MSISE、DTM三类大气密度模式的误差特点,通过比较精度和稳定性,基于现有空间天气参数,选取MSISE模式作为基础模式.研究利用星载加速度计数据反演载人航天轨道大气密度的方法,以验证我国载人航天轨道实测数据的精度;同时利用天宫一号以及神舟二号、三号、四号实测密度数据,以及相应的航天测控数据,分析模式误差与地方时、纬度和高度因素之间的关系,讨论建立合适的三维误差库来存储模式误差的方法,研究平均误差修正法和加权误差修正法,建立NRLMSISE-00的误差修正模式.修正结果应用于交会对接任务,与完全不修正时模式平均11.44%的误差相比较,两种修正方法的误差均明显减小,分别为5.41%和4.99%;其中平均误差修正法和加权误差修正法在未来1天、2天、3天的修正结果的误差分别是4.06%、3.73%,6.06%、5.78%,6.13%、5.72%,表明提前1天的修正效果最好;同时比较累积1-5天的误差库滑动也可以看出,误差库累积1天的效果相对较好;比较两种方法的预测效果显示,加权误差修正法优于平均误差修正法.研究表明基于三维误差库的模式修正方法显著提高了载人航天轨道大气密度预测精度,可为交会对接等载人航天任务提供技术支持.  相似文献   

16.
跨声速轴流压气机特性预测的损失模型研究   总被引:1,自引:0,他引:1  
吴虎  孙娜  杨金广 《航空发动机》2007,33(4):8-11,29
基于公开发表的研究成果,完善了1种新的跨声速轴流压气机总压损失及落后角预测模型,并发展了相应的跨声速轴流压气机非设计性能分析方法,建立了相应的计算机模拟程序。对2个跨声速轴流压气机的设计及非设计性能进行了数值模拟,对所得计算结果与试验结果的比较表明,本模型与分析方法能够应用于工程计算。  相似文献   

17.
田永强  张正科  屈科  翟琪 《航空学报》2016,37(2):461-474
介绍了基于当地变量的γ-Reθ转捩模型,并将该模型应用到后掠机翼的转捩预测和人工转捩最佳粗糙带高度以及人工转捩技术能够模拟的大气飞行雷诺数的确定中。为检验γ-Reθ转捩模型对后掠机翼转捩的预测能力,对ONERA M6机翼和DLR-F4标模机翼进行了边界层转捩预测,采用结构化网格和有限体积法求解雷诺平均Navier-Stokes(RANS)方程,得到了机翼表面的摩擦阻力系数分布,从而可以得到相应的转捩位置,预测得到的转捩位置与试验结果比较吻合,说明该模型对后掠机翼转捩预测是可信的。最后在DLR-F4标模机翼上表面固定了粗糙带,通过相同的方法得到了转捩位置,从而确定了马赫数为0.785、雷诺数为3.0×106时最佳粗糙带高度为0.11 mm;通过不断增大雷诺数使自由转捩位置不断向前缘移动,验证了人工转捩对大气飞行雷诺数的模拟能力。结果表明,在最佳粗糙带高度为0.11 mm下,可以实现对大气飞行高雷诺数的模拟。  相似文献   

18.
祝赖盛  张硕  葛宁 《推进技术》2021,42(6):1223-1234
为验证紊流模型在基于周向平均Navier-Stokes方程的通流计算中的适用性,给出了周向平均形式的Spalart-Allmaras紊流模型,并选择Baldwin-Lomax模型作为对比.通过两个经典简单算例以及两个典型叶轮机械算例对采用了上述两种紊流模型的通流模型进行验证与对比.两个经典简单算例结果表明,上述两种紊流...  相似文献   

19.
Impact of GPS Acquisition Strategy on Decision Probabilities   总被引:3,自引:0,他引:3  
The first stage of processing within a GPS receiver consists of the signal acquisition process, the output of which provides a rough estimation of code delay and Doppler frequency. The strong dependence of the acquisition performance on the decision strategy is shown, establishing the role of decision probabilities. Three acquisition strategies are analyzed and a new model describing the performance of a hybrid acquisition system is developed. The theoretical models are validated by simulations, and secondary phenomena, generally neglected in the literature, are also discussed.  相似文献   

20.
在介绍大气湍流光学长曝光像的两个模型——高斯模型(空间域模型)和统计平均光学传递函数模型(空间频率域模型)的基础上,推导两模型之间的关系与差别,并应用两模型数值计算了扩展目标通过大气的长曝光成像结果。此外,还应用高斯模型给出了自适应光学系统校正后的远场光斑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号