首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
数字化仪是一种具有高分辨率同时具备中等采样率的数据采集系统。为了提高数字化仪误差校准的精度和效率,提出了分段线性拟合和PID算法相结合的误差校准方法,此方法对误差的变化具有自适应功能。基于此校准方法设计了一套误差校准软件,实现了对数字化仪8个数据采集通道的自动校准,节省了繁杂的人工数据记录和计算,提高了校准的效率。实验结果表明,经过校准后,数字化仪测量的幅度精度和直流精度达到了指标要求。  相似文献   

2.
介绍了一种单矢量六自由度风洞天平校准系统的设计。采用砝码匀速运动过程中碰撞卸载的方法,实现对压电天平的瞬时加载;通过控制天平姿态以及砝码在加载头上的挂点位置实现单矢量加载;并采用多元校准方法对天平信号进行处理,满足超高速风洞测力试验对六分量压电天平校准的需求。校准系统主要由天平姿态调整机构、砝码加载机构、碰撞卸载机构以及控制系统、测量系统等部分组成。系统构造简单、系统误差源少,具有校准效率高,校准精度高等优点。  相似文献   

3.
以应变式压力测量系统为例,介绍了如何在试验中控制测量精度,以及如何通过误差统计计算和系统校准方法提高测量精度,从而满足试验数据容许误差限要求。  相似文献   

4.
为了得到精确的试验能级和响应数据,必须在试验前校准输入控制通道和数据通道。本章讨论数据和输入通道的校准以及为推导出适当的校准级所需要的计算。此外,用几个例子说明大概过程。  相似文献   

5.
基于激光雷达的机载设备安装姿态校准   总被引:1,自引:0,他引:1  
现代飞机对许多的机载设备安装提出更高的要求,而传统的飞机机载设备安装姿态的校准测量方法在测量校准精度和效率上已不能满足这些要求,需要采用基于先进数字化测量仪器和技术测量校准方法。通过对激光雷达系统测量原理的分析,本文提出了一种基于激光雷达的机载设备安装姿态校准新方法。与传统测量校准方法相比,这种基于激光雷达的校准方法在减少和简化测量校准工序、提高工作效率和校准精度等方面具有显著优点,能够满足现代飞机制造对机载设备安装姿态校准的更高要求。  相似文献   

6.
高精度可编程流量积算仪的设计   总被引:1,自引:0,他引:1  
本文介绍了一种高精度可编程流量积算仪的设计方法,包括该系统的测量数学模型建立,测量原理,硬件设计及软件设计。该系统可实现流量的高精度积算(优于1‰),软件校准,多种报警及掉电保护。  相似文献   

7.
本文论述在次声频范围内影响声测量系统低频响应的主要参数。根据不同的测量位置和传声器的型式,建议采用不同的校准方法(侧面开槽和后开槽)。本文指出了在次声频范围内作测量时不同方法的优缺点以及所采取的措施。  相似文献   

8.
传统气动声学研究观点认为,精确的声学测量要求风洞背景噪声和洞壁反射足够低,传声器测量结果有足够高的信噪比,这是大多数风洞无法达到的要求.近些年,基于声纳和雷达技术发展起来的麦克风相阵列技术可以通过增加阵列的传声器数目从而大幅提高声学测量的信噪比,具有噪声源研究和定位能力,并被成功地应用于非声学固壁风洞噪声源测量和噪声物理机制研究.作者基于相阵列波束生成频域算法研制出常规闭口风洞相阵列系统及相关技术,在FD-09风洞尝试进行了相阵列校准试验和某民机噪声测量试验.结果表明:相阵列技术能够准确捕捉到真实的校准声源,并从技术上验证了相阵列系统在常规闭口风洞测量气动噪声是有效的.  相似文献   

9.
简要地介绍了CARIA校准箱的基本构成和应用,并给出了该校准箱和荷兰NLR校准箱的一些比较。在这个校准箱中、推力和流量的测量精确度可分别达到0.2%和0.3%。  相似文献   

10.
基于加载平台的起落架载荷地面校准技术研究   总被引:1,自引:0,他引:1  
用应变法测量起落架的使用载荷,地面校准试验是载荷测量成功的关键。传统的起落架载荷校准试验是将起落架从飞机上拆下来,固定在专门的固定夹具上实施。受俄罗斯起落架载荷校准方法的启示,我们研制了专门用于起落架载荷校准试验的加载平台,实现了在飞机真实停放状态下对起落架进行校准,克服了传统方法中模拟起落架与飞机连接刚度难,且试验周期长、成本高、误差大的缺点。  相似文献   

11.
一种建筑物脉动风压测量系统   总被引:1,自引:0,他引:1  
简要介绍了一种应用在建筑物模型风洞试验中测量脉动风压的电子扫描系统。它是由原电子扫描测压系统PSI780B的传感器模块及其校正单元、与多通道高速A/D板、PC486微机和新设计的测压点选通接口组成。此外还使用毛细管限流器改善脉动测压系统的频响,并以上海浦东某高层建筑模型的脉动风压试验为例,讨论了系统的应用以及有关试验风速、采样时间与频率的选取,数据处理等实验技术问题  相似文献   

12.
为了满足动态燃烧试验对燃烧过程中燃烧放热量、温度、压力多参数动态测量的要求,研制了一套燃烧动态测试系统。首先从理论上分析了碳氢燃料燃烧时的化学反应过程与物理现象,采用光电传感技术,实现了对动态燃烧过程放热量的非接触式测量;其次运用动态理论详细研究了热电偶的动态特性,完善了用双丝频谱补偿法测量动态温度的方法;最后选择了合理的动态压力的测量方案。同时介绍了该系统的结构及工作特点、系统的动态联调结果等。试验表明了测试该系统具有所测参数多、工作性能稳定、动态响应快等特点,可广泛应用于动态与稳态燃烧试验研究或工业过程监控测量中  相似文献   

13.
根据发动机试车台矢量推力现场动态校准需求,通过系统化论证,针对试车台的技术要求及校准需求,解决发动机试车台现场实际使用和实验室校准条件不同造成的附加测量误差、试验台推力无法整体校准等问题。文中提出了利用摆锤式动态力加载装置实现标准矢量力加载的方案,为了验证设计方案的可行性,利用现有的设备研究验证校准方案,通过试验和分析给出了校准不确定度。结果表明:该方案动态性能优异,响应迅速,动态校准不确定度为2.2%,能满足高空发动机试车台矢量推力测试的需求,为后续进一步准确测试矢量推力提供了依据。  相似文献   

14.
本文对XNJD-1工业风洞数据采集与处理系统作了综合介绍。该系统具有同时进行测力测压试验的能力,并提供压力联机校正、模拟量通道标准信号校正功能。整个系统的设计包括了许多先进的仪器概念如:电子扫描测压,模拟量信号调理等。系统具有采集速度快、稳定性好、软硬件功能齐全、实时数据处理、快速提供实验数据报告及图表、使用及维修方便等特点。  相似文献   

15.
本文主要介绍了微机过程通道板的性能指标和用途,并以 IBM-PC 微机过程通道板组成的采集系统为例作了详细阐述。微机广泛地应用于测控系统中,微机过程通道板在测控系统中是联接微机和测控对象的桥梁。我们研制了各种类型的过程通道板,其中 IBM-PC 微机过程通道板在风洞测控系统、工厂、大学实验室等地方得到了较好应用。由微机过程通道板组成的测控系统方便灵活,测量精度高、成本低、性能稳定可靠。  相似文献   

16.
在可压缩流体中利用热线技术进行湍流度测量时,其输出不仅与脉动速度有关,也和流体温度、密度紧密相关。因此,需要建立与高速可压缩流体特征相似的校准装置,在使用前对热线探针进行准确校准。基于亚跨声速可压缩流体,对热线探针校准风洞的气动总体方案、关键结构设计、测控处系统研制等做了介绍和说明。风洞流场校测结果表明,模型区Ma最大偏差0.002,风洞速压可以降低至常规速压的50%以下,也可增至常规速压的1.7倍以上,温度和密度调节范围宽,流场均匀性好,满足热线探针校准需求。  相似文献   

17.
关于微小振动的激光多普勒测量   总被引:2,自引:0,他引:2  
星载红外遥感器辐射定标时,由于空间模拟设备真空系统启动的产生的振动不可避免地对辐射定标光学系统产生影响,使光学元件偏离理想光轴,从而影响定标精度。为了衡量振动对光学系统的影响,需对真空系统启动时产生的振动进行测量,包括振动频率和振幅。采用了精度较高的激光多普勒测量方法,满足振动测量的要求。  相似文献   

18.
针对某型导弹随动系统在实际发射过程中的运动姿态准确性,本文设计了一种高速相机动态测量系统。该系统采用多台高速相机为图像采集传感器,运用图像处理技术在导弹复合随动系统上实现其运动姿态的动态采集,利用软件编程完成运动特性动态数据的自动采集与处理,最后实现导弹随动系统运动特性动态校准。研究结果表明,该技术具有环境适应性强、测量效率高等优点,而且系统精度精确稳定。  相似文献   

19.
针对MEMS壁面剪应力传感器进行了标定及其不确定度分析工作。标定基于压力梯度法,使用扁平校验水槽作为主要的试验装置。测量不同壁面剪应力下的MEMS输出电压信号,通过最小二乘拟合可获得标定系数。反复进行壁面剪应力及电压测量,同时查找相关产品说明书获得壁面剪应力及标定系数的不确定度。试验结果表明,剪应力测量的相对扩展不确定度小于7%,且外流速度越大,剪应力测量的不确定度越小,因此扁平校验水槽能够提供较高精度的剪应力输入;电压测量的相对扩展不确定度小于7%,且外流速度越大,电压测量的不确定度越小,因此传感器能够可靠地用于流体壁面剪应力的测量;标定曲线具有合理的形态且拟合相关性较高,因此标定公式具有较好的可靠性。  相似文献   

20.
流体壁面剪应力的标定是实现该类传感器测量的前提。本文介绍了目前主要的3种壁面剪应力静态标定方法和2种动态标定方法,研究了剪应力基准发生原理、标定装置组成及适用范围。归纳总结了各类标定方法的优势与缺点,为壁面剪应力传感器标定方法的合理选择提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号