首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In space, the weightless environment provides a different stimulus to the otolith organs of the vestibular system, and the resulting signals no longer correspond with the visual and other sensory signals sent to the brain. This signal conflict causes disorientation. To study this and also to understand the vestibular adaptation to weightlessness, DARA has developed scientific equipment for vestibular and visuo-oculomotoric investigations. Especially, two video-oculography systems (monocular--VOG--and binocular--BIVOG, respectively) as well as stimuli such as an optokinetic stimulation device have successfully been employed onboard MIR in the frame of national and European missions since 1992. The monocular VOG was used by Klaus Flade during the MIR '92 mission, by Victor Polyakov during his record 15 months stay onboard MIR in 1993/94 as well as by Ulf Merbold during EUROMIR '94. The binocular version was used by Thomas Reiter and Sergej Avdeyev during the 6 months EUROMIR '95 mission. PIs of the various experiments include H. Scherer and A. Clarke (FU Berlin), M. Dieterichs and S. Krafczyk (LMU Munchen) from Germany as well as C.H. Markham and S.G. Diamond from the United States. Video-Oculography (VOG) is a technique for examining the function of the human balance system located in the inner ear (vestibular system) and the visio-oculomotor interactions of the vestibular organ. The human eye movements are measured, recorded and evaluated by state-of-the-art video techniques. The method was first conceived and designed at the Vestibular Research Laboratory of the ENT Clinic in Steglitz, FU Berlin (A. Clarke, H. Scherer). Kayser-Threde developed, manufactured and tested the facilities for space application under contract to DARA. Evaluation software was first provided by the ENT Clinic, Berlin, later by our subcontractor Sensomotoric Instruments (SMI), Teltow. Optokinetic hardware to support visuo-oculomotoric investigations, has been shipped to MIR for EUROMIR '95 and has successfully been used in conjunction with VOG by ESA astronaut Thomas Reiter. Most recently, BIVOG aboard MIR will be reused in the frame of German/Russian joint experiment sessions employing two Russian cosmonauts from August 1997 to January 1998.  相似文献   

2.
In the frame of the 179-days EUROMIR '95 space mission, two in-flight experiments have foreseen quantitative three-dimensional human movement analysis in microgravity. For this aim, a space qualified opto-electronic motion analyser based on passive markers has been installed onboard the Russian Space Station MIR and 8 in flight sessions have been performed. Techhology and method for the collection of kinematics data are described, evaluating the accuracy in three-dimensional marker localisation. Results confirm the suitability of opto-electronic technology for quantitative human motion analysis on orbital modules and raise a set of "lessons learned", leading to the improvement of motion analyser performance with a contemporary swiftness of the on-board operations. Among the experimental program of T4, results of three voluntary posture perturbation protocols are described. The analysis suggests that a short term reinterpretation of proprioceptive information and re-calibration of sensorimotor mechanisms seem to end within the first weeks of flight, while a continuous long term adaptation process allows the refinement of motor performance, in the frame of never abandoned terrestrial strategies.  相似文献   

3.
4.
PHYSIOLAB is a cardio-vascular laboratory designed by CNES in cooperation with IMBP, with double scientific and medical goals: -a better understanding of the basic mechanisms involved in blood pressure and heart rate regulation, in order to predict and control the phenomenon of cardio-vascular deconditionning. -a real-time monitoring of cosmonauts during functional tests. Launched to the MIR station in 1996, this laboratory was set up and used for the first time by Claudie Andre-Deshays during the French mission "Cassiopeia". The scientific program is performed pre, post and in-flight to study phenomena related to the transition to microgravity as well as the return to the earth conditions. Particular emphasis was placed on the development of the real-time telemetry to monitor LBNP test. This function was successful during the Cassiopeia mission, providing the medical team at TSOUP (MIR Control Center in Moscow) with efficient means to control the physiological state of the cosmonaut. Based on the results of this first mission, IMBP and CNES will go on using Physiolab with Russian crews. CNES will take advantage of the upcoming French missions on MIR to improve the system, and intends to develop a new laboratory for the International Space Station.  相似文献   

5.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   

6.
Skoog AI 《Acta Astronautica》1982,9(12):727-740
The delivery of fully qualified Environmental Control and Life Support System (ECLS) flight hardware for the Spacelab Flight Unit was completed in 1979, and the first Spacelab flight is scheduled for mid 1983.

With Spacelab approaching its operational stage, ESA has initiated the Follow-on Development Programme. The future evolution of Spacelab elements in a continued U.S./European cooperation is obviously linked to the U.S. STS evolution and leads from the sortie-mode improvements (Initial Step) towards pallet systems and module applications in unmanned and manned space platforms (Medium and Far Term Alternatives).

Extensive studies and design work have been accomplished on life support systems for Life Sciences Laboratories (Biorack) in Spacelab (incubators and holding units for low vertebrates).

Future long term missions require the implementation of closed loop life support systems and in order to meet the long range development cycle feasibility studies have been performed. Terrestrial applications of the life support technologies developed for space have been successfully implemented.  相似文献   


7.
Based on the results of studies carried out by ESA several possibilities are discussed to achieve mission cost reductions for large Spacelab instrument facilities as compared to their flight on several 7-day duration Spacelab missions. As an example three scientific telescope facilities are selected (LIRTS, EXSPOS, GRIST) which are defined to a Phase A level.Three new mission modes are considered:
• —Shuttle attached Spacelab mission mode with extended flight duration (up to 30 days) for which the application of planned capability extensions and new elements of the STS/Spacelab (e.g. Short Spacelab Pallets, Power Extension Package) are investigated.
• —Shuttle deployed mission mode, for which the telescope, accommodated on a Spacelab pallet, is docked to the Power Module, a new element of the Space Transportation System under study by NASA.
• —Free-flying mission mode, for which Shuttle launched dedicated missions of the facilities are considered, assuming varying degrees of autonomy with respect to supporting services of the Shuttle.
Reduction of costs have been considered on the levels of single mission cost and total programme cost. Fundamentally the charges for the instrument can be reduced by constraining the mass/volume factors with respect to the Shuttle capability. However, the instrument as part of a payload is only viable if an acceptable resource sharing including observation time can be achieved. Any single instrument will require several mission opportunities or one mission which achieves a similar or longer total observation programme.Based on an identification of instrument modifications of the Phase A baseline designs to favour cost reductions and on a derivation of technical requirements, constraints and finally budgetary cost comparisons an attempt is made to assess the advantages and disadvantages of the different mission modes.The favoured option for GRIST is a 2–3 weeks sortie mission followed after refurbishment by a longer Power Module docked mission. For LIRTS and EXSPOS the free-flying pallet modes are very attractive in terms of the longer durations achieved and in terms of cost per unit operating time.  相似文献   

8.
Marmann RA 《Acta Astronautica》1997,40(11):815-820
For more than 15 years, Spacelab, has provided a laboratory in space for an international array of experiments, facilities, and experimenters. In addition to continuing this important work, Spacelab is now serving as a crucial stepping-stone to the improved science, improved operations, and rapid access to space that will characterize International Space Station. In the Space Station era, science operations will depend primarily on distributed/remote operations that will allow investigators to direct science activities from their universities, facilities, or home bases. Spacelab missions are a crucial part of preparing for these activities, having been used to test, prove, and refine remote operations over several missions. The knowledge gained from preparing these Missions is also playing a crucial role in reducing the time required to put an experiment into orbit, from revolutionizing the processes involved to testing the hardware needed for these more advanced operations. This paper discusses the role of the Spacelab program and the NASA Marshall Space Flight Center- (MSFC-) managed missions in developing and refining remote operations, new hardware and facilities for use on Space Station, and procedures that dramatically reduce preparation time for flight.  相似文献   

9.
During the past ten years the French laboratories working in the field of fluids and material sciences had access to regular, long-lasting manned missions onboard the Russian MIR Space Station. Beyond the French scientific program that was performed with the ALICE apparatus, a cooperative research program was developed with DLR, NASA and RSA. This cooperation was based on bartered agreements that included the joint utilization of the instruments onboard the MIR station (ALICE, TITUS furnace from DLR, vibration device from RKK Energia) and the funding of dedicated cartridges (DLR) or thermostats (DLR and NASA), as well as launch services (NASA) by the Cooperating Agencies. We present a review of this program with a particular emphasis on its scientific results and on the progress that has been achieved in science and applications. They covered a large field of condensed matter physics, from material sciences to near-critical and off-critical phase separation kinetics and near critical fluid hydrodynamics (thermoacoustic heat transport and vibrational convection). The high microgravity relevance of all these investigations naturally led to outstanding results that was published in the world's best scientific journals. The analysis of the latest experiments performed during the PEGASUS mission shows they will not be an exception to that evaluation. Off-critical phase separation with NASA, pressure-driven piston effect and equiaxed solidification with DLR, heat transport under calibrated vibrations with RKK Energia, all will be presented. The conclusion will stress the international character of this microgravity research program, the conditions of its success and what can be gained from it in the perspective of the space station utilization.  相似文献   

10.
The European spacesuit system (ESSS) initiated by the European Space Agency (ESA) in the late 1980s had many similarities with the Soviet/Russian ORLAN spacesuit system, due to the Hermes system requirements. First, direct contacts in 1989 permitted closer comparison of the two suit systems, and soon the ORLAN manufacturer Zvezda could be contracted as support to the European spacesuit team. In particular, the suit enclosure design and predevelopment testing and operational analysis were performed in close cooperation between Zvezda and the European team under Dornier.

With the changing system requirements and a closer cooperation between ESA and the new Russian Space Agency (RKA) a new joint spaceplane/stations mission scenario came about. This scenario could be served by one spacesuit system, EVA SUIT 2000, which was to be jointly developed by a team headed by Zvezda and Dornier for ESA and RKA. ORLAN-DMA and ESSS experience and hardware were the initial platforms for these activities to create a new generation spacesuits for the Mir 2 and later the ISSs.

A suit demonstrator was manufactured and tested by the end of 1994 when ESA stopped its spacesuit development activities and the joint EVA SUIT 2000 project was terminated. However, many of the features designed, manufactured and tested for the EVA SUIT 2000 were then implemented by Zvezda in the new Russian spacesuit system ORLAN-M, now in full operation onboard the ISS.  相似文献   


11.
For more than a decade Kayser-Threde, a medium-sized enterprise of the German space industry, has been involved in astrobiology research in partnership with a variety of scientific institutes from all over Europe. Previous projects include exobiology research platforms in low Earth orbit on retrievable carriers and onboard the Space Station. More recently, exobiology payloads for in situ experimentation on Mars have been studied by Kayser-Threde under ESA contracts, specifically the ExoMars Pasteur Payload. These studies included work on a sample preparation and distribution systems for Martian rock/regolith samples, instrument concepts such as Raman spectroscopy and a Life Marker Chip, advanced microscope systems as well as robotic tools for astrobiology missions. The status of the funded technical studies and major results are presented. The reported industrial work was funded by ESA and the German Aerospace Center (DLR).  相似文献   

12.
The mission's success fully depends on the Payload Operations conducted during the space flight. The Ground Team has to be trained to assist the Space Crew, to replan the cosmonaut's activities when contingengies occurr onboard and to change or cancel Payload activities when required. In order to act efficiently during the mission, the Ground Team must be prepared in advance of the flight and able to operate special tools for tracking the mission's progress, anticipating problems and taking decisions in realtime.

This document sets out the approach for conducting such a preparation for Ground Operation. It will be focused on the Altaïr mission performed in July 1993 onboard the Russian Mir space station.  相似文献   


13.
Detector packages consisting of thermoluminescence detectors (TLDs), nuclear emulsions and plastic nuclear track detectors were exposed in different sections of the MIR space station, inside the Spacelab during the IML1 mission, and inside Spacelab module and tunnel during the D2 mission. This report concentrates on total dose measurements with TLDs during these mission. The results are discussed and compared to results of former missions and to calculations. Finally, dose equivalents and mean quality factors for each mission are presented which are derived from the TLD results and results obtained from the other detector systems. Dose equivalents range between 200 μSvd−1 and 700 μSvd−1.  相似文献   

14.
Hispasat Advanced Generation 1 (HAG1) is the first satellite using the SGEO platform, which is under the development in the ESA Artes-11 program. Since the last presentation in the IAC 2007, a European industrial consortium led by OHB has completed the mission and spacecraft design. The platform Preliminary Design Review has been carried out in May 2008. The customer for the first mission is a commercial operator—Hispasat. The contract was signed in December 2008 and the satellite will be launched in 2012. To give confidence to the customer, SGEO platform will use up to date flight proven technologies. HAG1 carries 20/24 Ku-band and 3/5 Ka-band transponders to provide commercial services. Some innovative payload technologies will also be flown on board of HAG1 to gain in-orbit heritage. SGEO has also been selected as the baseline platform for the ESA Data Relay Satellite (EDRS). Phase-A study has just kicked off in January 2009. The targeted launch date is 2013. Heinrich Hertz will also use the SGEO platform. Heinrich Hertz is funded by the German Space Agency (DLR) and provides flight opportunities for technologies and components developed by the German Space Industry. With the HAG1 contract in hand, and EDRS and Heinrich Hertz in the line, OHB with its partners has the confidence that it will be able to speed up the product development of the SGEO platform for potential customers in the commercial market. This paper will first present the updated platform design and the status of the product development will be followed with the introduction of innovative payload technologies on board the first mission—HAG1 and ended with the mission concepts of EDRS and Heinrich Hertz missions.  相似文献   

15.
A feasibility study in 1992 showed the benefits of a common European Russian space suit development, EVA Suit 2000, replacing the Russian space suit Orlan-DMA and the planned European Hermes EVA space suit at the turn of the century. This EVA Suit 2000 is a joint development initiated by the European Space Agency (ESA) and the Russian Space Agency (RKA). The main objectives of this development program are: first utilization aboard the Russian Space Station MIR-2; performance improvement with respect to current operational suits; development cost reduction. Russian experience gained with the present extravehicular activity (EVA) suit on the MIR Space Station and extensive application of European Technologies will be needed to achieve these ambitious goals. This paper presents the current status of the development activities, the space suit system design and concentrates in more detail on life support aspects. Specific subjects addressed will include the overall life support conceptual architecture, design features, crew comfort and operational considerations.  相似文献   

16.
Within the space program of the Federal Republic of Germany the microgravity program in connection with the utilization of SPACELAB constitutes a central task which determines the long-term program concepts and also their relation to German participation in future ESA programs.The scientific preparatory programs under way for some years now have made further progress. Extensive flight experience and valuable scientific results were obtained on the basis of successful rocket pre-programs. The present paper describes the process in which scientific and organisational priorities are being defined for the planning and execution of the experimental programs.In order to obtain a sufficient number of flight opportunities, payloads for SPACE SHUTTLE missions, in particular under the NASA GAS Program, as well as experimental equipment such as the materials laboratory (MSDR) for FSLP are being developed. The German program focuses on preparing a German SPACELAB mission D1 planned for 1985, which is intended to verify the applicability and efficiency of manned research laboratories for industry and the scientific community. A second emphasis is on preparing the use of SHUTTLE-supported re-usable space platforms.  相似文献   

17.
On the basis of the experience gained during the previous french-russian missions on board MIR about the adaptation processes of the cardio-vascular system, a new laboratory has been designed. The objective of this “PHYSIOLAB” is to have a better understanding of the mechanisms underlying the changes in the cardio-vascular system, with a special emphasis on the phenomenon of cardio-vascular deconditioning after landing.

Beyond these scientific objectives, it is also intended to use PHYSIOLAB to help in the medical monitoring on-board MIR, during functional tests such as LBNP.

PHYSIOLAB will be set up in MIR by the French cosmonaut during the next french-russian CASSIOPEE mission in 1996. Its architecture is based on a central unit, which controls the experimental protocols, records the results and provides an interface for transmission to the ground via telemetry. Different specific modules are used for the acquisition of various physiological parameters.

This PHYSIOLAB under development for the CASSIOPEE mission should evolve towards a more ambitious laboratory, whose definition would take into account the results obtained with the first version of PHYSIOLAB. This “second generation” laboratory should be developed in the frame of wide international cooperation.  相似文献   


18.
One year after the achievemant of the 2 weeks ANTARES french-russian mission in the MIR station in July 1992, a 22 days ALTAÏR mission with a french cosmonaut has been performed in July 1993, making use of the scientific payload remaining on board. Taking benefit of the analysis of the previous mission, the experimental protocols were adapted to refine scientific objectives and gave to the scientists the opportunity to enhance quantitatively and qualitatively their results. The french biomedical program, conducted in close scientific cooperation with IMBP and associated laboratories, was composed of 8 experiments out of which 2 were new with regards to the ANTARES program. In the field of cardio-vascular physiology and fluid regulation, the experiments: ORTHOSTATISME, DIURESE have been renewed and complemented by the TISSU experiment (proposed by a german scientist) and a real-time tele-assistance program using US echography technic and ground support from the french CADMOS support control center located in Toulouse. With respect to neurosciences objectives, to the experiments VIMINAL (cognitive processes) and ILLUSIONS (study of proprioceptives cues), was added the SYNERGIES experiment to analyse the postural adjustements during movement. The IMMUNOLOGIE experiment carried on and the radiobiological experiment BIODOSE ended.

Adding the results of the 2 missions ANTARES and ALTAÏR, and the data obtained in between onboard with russian cosmonauts, the scientists have received a wealth of physiological data and gained reproducibility and confidence in their results.  相似文献   


19.
The tether assisted re-entry of small payloads is a highly interesting tool for space transportation especially for the return of small payloads from Space Station ISSA. The small tether mission Rapunzel was initiated in 1991 by the Institute of Astronautics, TU München and the Kayser-Threde Company, to design a low cost and feasible tether experiment for the verification of the tether assisted re-entry. Together with the Samara State Aerospace University, Russia, a mission concept on a Russian Resurs or Photon capsule was developed. Based on this mission a deployer has been designed, mainly based on technology of the textile industry, which insures high reliability at low cost. Recently a similar configuration is being discussed for the ESA-TSE mission.The main work during the recent time was the development and test of the breadboard model of the deployer system. After successfully completing initial ground tests with the deployer, further tests during the ESA Parabolic Flight campaign in November 1995 were conducted. After a short introduction of the overall mission scenario, the planned configuration in orbit, this paper will present the results of the microgravity test campaign onboard the KC-135 aircraft and compare them with the ground test. The deployer showed a good performance during all tests, including ejection of the end-mass, deployment, and braking. Problems that occurred during the tests will be discussed, and solutions for the detected flaws and the results of the redesign now in progress will be presented. These verifications have shown the feasibility of the concept and will lay the base for the planned development of the flight model of the deployer.  相似文献   

20.
The European Space Agency (ESA) contribution to the International Space Station (ISS) goes much beyond the delivery of hardware like the Columbus Laboratory, its payloads and the Automated Transfer Vehicles. ESA Astronauts will be members of the ISS crew. ESA, according to its commitments as ISS international partner, will be responsible to provide training on its elements and payloads to all ISS crewmembers and medical support for ESA astronauts. The European Astronaut Centre (EAC) in Cologne has developed over more than a decade into the centre of expertise for manned space activities within ESA by contributing to a number of important co-operative spaceflight missions. This role will be significantly extended for ISS manned operations. Apart from its support to ESA astronauts and their onboard operations, EAC will have a key role in training all ISS astronauts on ESA elements and payloads. The medical support of ISS crew, in particular of ESA astronauts has already started. This paper provides an overview on status and further plans in building up this homebase function for ESA astronauts and on the preparation towards Training Readiness for ISS crew training at EAC, Cologne. Copyright 2001 by the European Space Agency. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Released to IAF/IAA/AIAA to publish in all forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号