首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
杨彬  唐生勇  李爽  夏陈超 《宇航学报》2018,39(11):1197-1208
针对载人火星探测任务,结合我国现有技术基础,提出我国载人火星探测方案,重点研究载人火星探测任务推进系统的设计。首先,综合考虑载人深空探测任务的约束,采用Pork-Chop图设计了适用于不同任务场景的转移轨迹;然后,参考我国空间站技术,基于核热推进系统设计了我国载人火星探测任务的飞船;最后,对核热推进系统的发动机台数和推力进行了优化,得到了适用于不同任务场景的最优推进系统组合方案。本文所研究内容为我国未来载人火星探测任务提供了有益参考。  相似文献   

2.
Japan Aerospace Exploration Agency has a plan to develop the small satellite standard bus for various scientific missions and disaster monitoring missions. The satellite bus is a class of 250–400 kg mass with three-axis control capability of 0.02 accuracy. The science missions include X-ray astronomy missions, planetary telescope missions, and magnetosphere atmosphere missions. In order to adapt the wide range of mission requirements, the satellite bus has to be provided with flexibility. The concepts of modularization, reusability, and product line are applied to the standard bus system. This paper describes the characteristics of the small satellite standard bus which will be firstly launched in 2011.  相似文献   

3.
刘磊  陈明  张哲  刘勇  马传令 《宇航学报》2019,40(8):849-860
面向未来月球和深空探测任务的需求,调研了地月平动点应用与研究的国内外现状与进展,着重分析了近年来的研究方向、研究内容、技术方法与特点,提出了面向未来月球和深空探测任务的地月平动点应用构想,梳理总结了需解决的相应关键技术,可为未来平动点相关研究与应用提供有益借鉴,以及为我国后续月球和深空探测任务的规划与论证提供参考。  相似文献   

4.
Since September 2001, NASA's In-Space Propulsion Technology (ISPT) program has been developing technologies for lowering the cost of planetary science missions. Recently completed is the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Two other cost saving technologies nearing completion are the NEXT ion thruster and the Aerocapture technology project. Under development are several technologies for low-cost sample return missions. These include a low-cost Hall-effect thruster (HIVHAC) which will be completed in 2011, light-weight propellant tanks, and a Multi-Mission Earth Entry Vehicle (MMEEV). This paper will discuss the status of the technology development, the cost savings or performance benefits, and applicability of these in-space propulsion technologies to NASA's future Discovery, and New Frontiers missions, as well as their relevance for sample return missions.  相似文献   

5.
火星大气进入段轨迹优化与制导技术研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
首先根据国际上实施的火星探测任务及未来火星着陆探测的发展需求,阐述火星大气进入段轨迹优化与制导的重要性。结合火星着陆环境和探测器的气动特性等,归纳出火星大气进入段轨迹优化与制导面临的挑战。在此基础上,结合未来火星着陆任务的安全精确着陆目标,梳理火星大气进入段轨迹优化与制导所需解决的关键技术,分析目前火星进入段轨迹优化与制导技术研究进展及发展趋势。最后,对未来火星精确着陆所需的进入段轨迹优化与制导技术发展方向进行了展望。  相似文献   

6.
空间环境是影响航天器可靠性的重要因素。与地球轨道航天器相比,行星际探测任务可能会遭受更加恶劣的空间环境,例如极端温度环境,辐射环境,腐蚀性大气环境、宇宙尘等,再加上行星际任务寿命长,采用先进的器件和材料,空间环境对行星际探测器的可靠性构成严重的威胁,直接关系到探测目标能否实现。因此考虑空间环境对行星际探测器的影响,开展相关的预先研究无论是对于制定行星际空间探测计划,还是搭载仪器的设计都具有非常重要的意义。文章分析了极端温度、辐射环境和行星表面综合环境对探测器的影响,并对开展相关研究提出了建议。  相似文献   

7.
NASA’s Discovery, Explorer, and Mars Scout mission lines have demonstrated over the past 15 years that, with careful planning, flexible management techniques, and a commitment to cost control, small space science missions can be built and launched at a fraction of the price of strategic missions. Many credit management techniques such as co-location, early contracting for long-lead items, and a resistance to scope creep for this, but it is also important to examine what may be the most significant variable in small mission implementation: the roles and the relationship of the principal investigator, responsible to NASA for the success of the mission, and the project manager, responsible for delivering the mission to NASA. This paper reports on a series of 55 oral histories with principal investigators, project managers, co-investigators, system engineers, and senior management from nearly every competitively selected Discovery mission launched to date that discuss the definition and evolution of these roles and share revealing insights from the key players themselves. The paper will show that there are as many ways to define the principal investigator/project manager relationship as there are missions, and that the subtleties in the relationship often provide new management tools not practical in larger missions.  相似文献   

8.
The main characteristics of the trajectory design of space observatory missions in the Earth–Sun libration point region is highlighted, based on experiences gained in work performed by the authors on ESA missions. Free transfers always lead to large-amplitude orbits around L2, their properties (amplitudes, phases, non-linear behaviour) are related to the conditions at perigee. Launch scenarios with different degrees of freedom in the perigee geometry and different strategies of sharing the apogee raising between launcher and spacecraft propulsion for Soyuz (with circular parking orbit or direct injection) and Ariane 5 launches from French Guiana will be discussed. Besides the orbit selection and transfer analysis, an important aspect of libration missions is the maintenance of the operational orbit. For some missions it is required to maximise the time between maintenance manoeuvres, and for some the thrust authority is limited. In both cases the exponential nature of the state transition matrix has to be considered. If the equivalent velocity error in the unstable direction becomes too large, the orbit can become unrecoverable, leading to a departure from the environment of the Lagrange point within a few months.  相似文献   

9.
NASA's proposed roadmap for robotic Mars exploration over the next decade is influenced by science goals, technology needs and budgetary considerations. These requirements could introduce potential changes to the succession of missions, resulting in both technology feed forward and heritage. For long duration robotic surface missions at locations, where solar power generation is not feasible or limited, Radioisotope Power Systems (RPS) could be considered. Thus, RPSs could provide enabling power technologies for some of these missions, covering a power range from 10s of milliwatts to potentially a kilowatt or even higher. Currently, NASA and DoE with their industry partners are developing two RPSs, both generating about 110 W(e) at BOL. These systems will be made available as early as 2009. The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG)—with static power conversion—was down-selected as a potential power source for the MSL mission. Development of small-RPSs is in a planning stage by NASA and DoE; potentially targeting both the 10s of milliwatts and 10s of watts power ranges. If developed, Radioisotope Heat Unit (RHU) based systems—generating 10s to 100s of milliwatts—could power small adjunct elements on larger missions, while the GPHS module-based systems—each generating 10s of watts—could be stacked to provide the required power levels on MER class surface assets. MMRTGs and Stirling Radioisotope Generators (SRGs) could power MSL class or larger missions. Advanced Radioisotope Power Systems (ARPS) with higher specific powers and increased power conversion efficiencies could enhance or even enable missions towards the second half of the next decade. This study examines the available power system options and power selection strategies in line with the proposed mission lineup, and identifies the benefits and utility of the various options for each of the next decade launch opportunities.  相似文献   

10.
Within the European space platform program the EURECA is being established as a ground-based platform for short microgravity missions. The development towards a serviceable platform for longer, scientific missions is described. The plan of an advanced space-based platform for increasing payload demands is outlined. The platform design and the adaptation to scientific missions and servicing operations are investigated. The cost-effective utilization of the different platform types using new operational concepts is analyzed in parametric life cycle cost calculations for different payloads and mission scenarios.  相似文献   

11.
In order to meet the growing global requirement for affordable missions beyond Low Earth Orbit, two types of platform are under design at the Surrey Space Centre. The first platform is a derivative of Surrey's UoSAT-12 minisatellite, launched in April 1999 and operating successfully in-orbit. The minisatellite has been modified to accommodate a propulsion system capable of delivering up to 1700 m/s delta-V, enabling it to support a wide range of very low cost missions to LaGrange points, Near-Earth Objects, and the Moon. A mission to the Moon - dubbed “MoonShine” - is proposed as the first demonstration of the modified minisatellite beyond LEO. The second platform - Surrey's Interplanetary Platform - has been designed to support missions with delta-V requirements up to 3200 m/s, making it ideal for low cost missions to Mars and Venus, as well as Near Earth Objects (NEOs) and other interplanetary trajectories. Analysis has proved mission feasibility, identifying key challenges in both missions for developing cost-effective techniques for: spacecraft propulsion; navigation; autonomous operations; and a reliable safe mode strategy. To reduce mission risk, inherently failure resistant lunar and interplanetary trajectories are under study. In order to significantly reduce cost and increase reliability, both platforms can communicate with low-cost ground stations and exploit Surrey's experience in autonomous operations. The lunar minisatellite can provide up to 70 kg payload margin in lunar orbit for a total mission cost US$16–25 M. The interplanetary platform can deliver 20 kg of scientific payload to Mars or Venus orbit for a mission cost US$25–50 M. Together, the platforms will enable regular flight of payloads to the Moon and interplanetary space at unprecedented low cost. This paper outlines key systems engineering issues for the proposed Lunar Minisatellite and interplanetary Platform Missions, and describes the accommodation and performance offered to planetary payloads.  相似文献   

12.
Accurate estimations of the health risks to astronauts due to space radiation exposure are necessary for future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic rays (GCR), which include high-energy protons and heavy ions. While the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle, the individual SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, ?. The risk of radiation exposure to astronauts as well as to hardware from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection. To support the probabilistic risk assessment for EVAs, which could be up to 15% of crew time2 on lunar missions, we estimated the probability of SPE occurrence as a function of solar cycle phase using a non-homogeneous Poisson model [1] to fit the historical database of measurements of protons with energy>30 MeV, Φ30. The resultant organ doses and dose equivalents, as well as effective whole body doses, for acute and cancer risk estimations are analyzed for a conceptual habitat module and for a lunar rover during space missions of defined durations. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning for future manned space exploration missions.  相似文献   

13.
Phoenix--the first Mars Scout mission   总被引:2,自引:0,他引:2  
Shotwell R 《Acta Astronautica》2005,57(2-8):121-134
NASA has initiated the first of a new series of missions to augment the current Mars Program. In addition to the systematic series of planned, directed missions currently comprising the Mars Program plan, NASA has started a series of Mars Scout missions that are low cost, price fixed, Principal [correction of Principle] Investigator-led projects. These missions are intended to provide an avenue for rapid response to discoveries made as a result of the primary Mars missions, as well as allow more risky technologies and approaches to be applied in the investigation of Mars. The first in this new series is the Phoenix mission which was selected as part of a highly competitive process. Phoenix will use the Mars 2001 Lander that was discontinued in 2000 and apply a new set of science objectives and mission objectives and will validate this soft lander architecture for future applications. This paper will provide an overview of both the Program and the Project.  相似文献   

14.
Through the application of advanced technologies and mission concepts, architectures for missions beyond Earth orbit have been dramatically simplified. These concepts enable a stepping stone approach to science driven; technology enabled human and robotic exploration. Numbers and masses of vehicles required are greatly reduced, yet the pursuit of a broader range of science objectives is enabled. The scope of human missions considered range from the assembly and maintenance of large aperture telescopes for emplacement at the Sun-Earth libration point L2, to human missions to asteroids, the moon and Mars. The vehicle designs are developed for proof of concept, to validate mission approaches and understand the value of new technologies. The stepping stone approach employs an incremental buildup of capabilities, which allows for future decision points on exploration objectives. It enables testing of technologies to achieve greater reliability and understanding of costs for the next steps in exploration.  相似文献   

15.
In the past two years, NASA has begun to develop and implement plans for investigations on robotic Mars missions which are focused toward returning data critical for planning human missions to Mars. The Mars Surveyor Program 2001 Orbiter and Lander missions will mark the first time that experiments dedicated to preparation for human exploration will be carried out. Investigations on these missions and future missions range from characterization of the physical and chemical environment of Mars, to predicting the response of biology to the Mars environment. Planning for such missions must take into account existing data from previous Mars missions which were not necessarily focused on human exploration preparation. At the same time, plans for near term missions by the international community must be considered to avoid duplication of effort. This paper reviews data requirements for human exploration and applicability of existing data. It will also describe current plans for investigations and place them within the context of related international activities.  相似文献   

16.
The 2007 US National Research Council Decadal Survey for Earth Science and Applications from Space was the first consensus perspective produced by the US Earth Science community of the relative priorities among a sequence of 17 satellite missions over the course of the next decade. However, the Decadal Survey only captured the perspective of the science community, leading to questions about the inclusion of broader priorities from constituent communities and stakeholders. We present a stakeholder value network analysis for the NASA/NOAA Earth Observation Program. The analysis includes a rigorous articulation of the needs and objectives of 13 major stakeholders and a complete stakeholder value network with 190 individual “value flows” that capture the interactions between all the stakeholders. It produces a novel stakeholder map, graphically indicating the outputs most likely to create a lasting Earth Science program. The most important value loops and program outputs are used to derive a set of high-level program goals that suggest what NASA and NOAA should do, as well as how they should conduct business. The analysis concludes that international partnerships represent a strong potential partner for certain science missions with greater potential value delivery than currently-prioritized efforts with defense stakeholders and concludes that weather and land-use missions, in addition to climate missions, should be given highest priority; water, human health, and solid Earth missions should be given lower priority based on each science category's potential for delivering value to the entire stakeholder network.  相似文献   

17.
18.
基于国际上成功着陆的火星探测任务和未来火星着陆探测技术的发展需求,阐述了火星进入段自主导航的必要性。首先总结了火星进入段自主导航技术的研究现状与发展趋势,随后分析了火星进入段自主导航的特点以及所面临的挑战,并概括了火星进入段自主导航所涉及的关键技术。最后对我国未来火星探测任务进入段的自主导航技术发展方向进行了展望。  相似文献   

19.
《Acta Astronautica》2003,52(2-6):371-379
Under constrained budgets and rigid schedules, NASA and industry have greatly increased their utilization of small satellites to conduct low-cost planetary investigations. Recent failed small planetary science spacecraft such as Mars Polar Lander (MPL) and Mars Climate Orbiter (MCO), and impaired missions such as Mars Global Surveyor (MGS) have fueled the ongoing debate on whether NASA's “Faster, Better, Cheaper” (FBC) approach is working. Several noteworthy failures of earth-orbiting missions have occurred as well including Lewis and the Wide-field Infrared Experiment (WIRE). While recent studies have observed that FBC has resulted in lower costs and shorter development times, these benefits may have been achieved at the expense of lowering probability of success. One question remaining to be answered is when is a mission “too fast and too cheap” that it is prone to failure? This paper assesses NASA FBC missions in terms of a complexity index measured against development time and spacecraft cost. A comparison of relative failure rates of recent planetary and earth-orbiting missions are presented, and conclusions regarding dependence on system complexity are drawn.  相似文献   

20.
Ajey Lele   《Space Policy》2010,26(4):222-228
After a gap of 40 years, the Moon is again the focus of several countries’ space ambitions. Japan, China and India have already launched their first Moon missions and are expected to send humans moonwards within the next 10–15 years. This revival of lunar programmes in the post-cold war era goes beyond symbolism and is also about the race to grab the natural resources of the Moon. Such ambitious missions by these states imply that they intend to change the unipolar world into one with multiple power centres, and would use space technology as one of the components to do so. This paper examines the first phase Moon missions of the Asian states and argues that their overall deep space mission aspirations have strategic ambitions attached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号