首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although not realized at the time, the defeat of the German Air Force in the summer of 1940 was one of the crucial battles of World War II. The narrow margin of victory can be ascribed to Britain's air-warning radar, Chain Home (CH), consisting of the 15-meter CH and the 1.5-meter CHL. The skillful use of this equipment by the Royal Air Force made daylight bombing unsustainable; the Luftwaffe then turned to night attacks, generally called "The Blitz." These were not effective in destroying military and industrial targets and depended on the hope of reducing the population's will to fight. Chain Home was of little use except to observe the attackers arrival, as it had almost no ability to follow the attackers as they proceeded inland. This eventuality was reckoned with before the outbreak of hostilities and had called for radars mounted in night fighters capable of guiding the pilot close enough to the target for him to open fire visually. The electronic techniques used at 1.5-meters were adapted to planes capable of carrying the radar and its operator. But there were three important design constraints: 1) the antennas had to be restricted to sizes that were practical for installation on aircraft, which for meter waves gave them low gain and large side lobes; 2) the set's maximum range was limited by the fighter's altitude as a result of the huge ground returns from the side lobes. British antiaircraft artillery, the stepchild of their arms, was too ineffective to drive the bombers to extreme altitudes; and 3) a minimum range had to be held until the flier could see his target, which strained the pulse techniques of the time.  相似文献   

2.
The author relates how the MIT Radiation Laboratory came into existence, how it was run, and the research it did during World War II  相似文献   

3.
The Rover Environmental Monitoring Station (REMS) will investigate environmental factors directly tied to current habitability at the Martian surface during the Mars Science Laboratory (MSL) mission. Three major habitability factors are addressed by REMS: the thermal environment, ultraviolet irradiation, and water cycling. The thermal environment is determined by a mixture of processes, chief amongst these being the meteorological. Accordingly, the REMS sensors have been designed to record air and ground temperatures, pressure, relative humidity, wind speed in the horizontal and vertical directions, as well as ultraviolet radiation in different bands. These sensors are distributed over the rover in four places: two booms located on the MSL Remote Sensing Mast, the ultraviolet sensor on the rover deck, and the pressure sensor inside the rover body. Typical daily REMS observations will collect 180 minutes of data from all sensors simultaneously (arranged in 5 minute hourly samples plus 60 additional minutes taken at times to be decided during the course of the mission). REMS will add significantly to the environmental record collected by prior missions through the range of simultaneous observations including water vapor; the ability to take measurements routinely through the night; the intended minimum of one Martian year of observations; and the first measurement of surface UV irradiation. In this paper, we describe the scientific potential of REMS measurements and describe in detail the sensors that constitute REMS and the calibration procedures.  相似文献   

4.
5.
本文从教学需求的角度,减轻机房管理员维护工作量的角度,并考虑到性能/价格比的因素,论述了NT网在计算机实验室的设计与实现以及它的功能与应用。  相似文献   

6.
Proteus仿真软件在构建单片机实验室中的应用   总被引:4,自引:0,他引:4  
通过采用一种软件仿真单片机实验实训的新思路,对于解决单片机实践教学需要大量投入更新实验仪器设备,减轻学校或学生经费压力具有一定的现实意义。  相似文献   

7.
The Conventional Air Launched Cruise Missile (CALCM) was developed from the strategic ALCM, AGM-86, by integrating GPS navigation into the missile in place of terrain correlation (TERCOM). In addition, the nuclear warhead was replaced by conventional explosives. The CALCM was developed, tested, and fielded in a single year (mid-1986-mid-1987) by the Boeing Company where the author was then employed. Although the GPS technology used, a Rockwell single channel aided receiver, has been eclipsed by newer receivers with additional capabilities and newer technology, many innovative things were done in completing the CALCM integration: the external loading of almanac data along with other mission data, three satellite navigation capability, and the use of a single channel receiver in a dynamic flight environment. This effort demonstrated that GPS outputs can be integrated quickly into an existing weapon system using the traditional loosely coupled “cascaded filter” approach. Although this approach is not as ideal as a tightly coupled integration using raw GPS data, the use of cascaded filters resulted in a weapon that was able to be rapidly fielded. The Air Force had sufficient confidence in the missile, that after four years of operational testing, 35 of these missiles were targeted at key sites at the start of the Gulf War in 1991. This effort, which was declassified in 1992, resulted in the first weapon in the DoD inventory to be operational using GPS navigation. The effort deserves consideration as a model as to how GPS integration can be performed  相似文献   

8.
Mars Science Laboratory’s Curiosity rover carries a set of five external verification standards in hermetically sealed containers that can be sampled as would be a Martian rock, by drilling and then portioning into the solid sample inlet of the Sample Analysis at Mars (SAM) suite. Each organic check material (OCM) canister contains a porous ceramic solid, which has been doped with a fluorinated hydrocarbon marker that can be detected by SAM. The purpose of the OCM is to serve as a verification tool for the organic cleanliness of those parts of the sample chain that cannot be cleaned other than by dilution, i.e., repeated sampling of Martian rock. SAM possesses internal calibrants for verification of both its performance and its internal cleanliness, and the OCM is not used for that purpose. Each OCM unit is designed for one use only, and the choice to do so will be made by the project science group (PSG).  相似文献   

9.
一种高超声速进气道起动/再起动的数值研究   总被引:1,自引:2,他引:1  
李璞  郭荣伟 《航空动力学报》2010,25(5):1049-1055
对一种定几何轴对称高超声速进气道的起动过程、来流马赫数引起的不起动和再起动过程的非定常流态进行了数值研究,分析了唇罩侧板后掠对进气道起动/再起动性能的影响.结果表明:唇罩侧板后掠形成了横向溢流,缓解了捕获流量和进气道流通能力之间的矛盾,从而改善了进气道的起动/再起动性能;内收缩段内的激波与边界层的干扰较强,成为进气道起动的瓶颈.   相似文献   

10.
This review assumes that many non-US readers may not be well-informed about the steps and work in radar development in the US after WW II to the present. Many know MIT by name and recall the famous Radiation Laboratory Series. But the more recent technical history has been less in the "public domain." In an attempt to correct this, one of the key institutions in the field, the MIT Lincoln Laboratory two years ago produced a special issue of their regular publication. Although the document currently at hand is not a book in the strict sense, the size, shape, and editorial comprehensiveness of the MIT Lincoln Laboratory Journal's Fifty-Year Anniversary Issue (12, 2, 2000) justifies calling this article being treated as a book review.  相似文献   

11.
活塞式航空煤油发动机冷启动性能试验   总被引:1,自引:0,他引:1  
针对启喷转速、燃油温度、点火能量等影响因素,在一台排量650 mL的单缸试验机上,开展了对航空煤油发动机冷启动性能的试验研究。结果表明:随着启喷转速的提高,启动时间呈现先变短后变长的趋势,启喷转速为1 200 r/min时启动时间最短;燃油温度的提高对冷启动性能和燃烧特性都有提升,在本文试验条件下,燃油温度为50 ℃时即可成功启动;提升点火能量对火核形成和火焰传播都有积极影响,可显著缩短启动时间,但当点火能量增大到75 mJ之后,其改善作用已不明显。  相似文献   

12.
高超声速推进风洞是进行超燃冲压发动机模型地面模拟的重要试验设备。其中,扩压段的设计非常重要,它不是孤立的,而与主流系统和引射系统密切相关。通过对不同几何形状的扩压段在不同安装位置进行调试,研究在风洞起动过程中整个系统流动状态的演变规律,探索扩压段的优化设计。实验表明,扩压段应安装在距主喷管较近的位置,并具有与主喷管相匹配的入口面积和形状。扩压段的形状应设计成能使主气流通过一系列斜激波串减速的通道。扩压段应具有一定的长度以保证主气流减速到一定程度。  相似文献   

13.
Colangeli  L.  Mennella  V.  Brucato  J.R.  Palumbo  P.  Rotundi  A. 《Space Science Reviews》1999,90(1-2):341-354
One of the main objectives of modern astrophysics is the characterisation of properties and evolution of materials present in space. Production, processing and analysis of cosmic dust analogues in the laboratory represents a powerful tool to interpret astronomical observations and to contribute to the solution of puzzling problems which are so far unsolved. In the present paper we summarize recent results obtained in our laboratory on carbon-based and silicate materials able to simulate various types of cosmic grains. The laboratory data are applied to discuss the nature of spectral features observed in the interstellar medium and in comets. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
提出了利用两平面反射镜多次反射来虚拟室外基线场,在室内完成检定光电测距仪及全站型电子速测仪测距部分的解决方案;在现有技术的层面上对该方案所面临的技术难题进行了探讨,对其可行性进行了论证;对该方案实施1000 m测长的不确定度进行了详细的分析和计算,得出了该方案完全可行的结论.  相似文献   

15.
16.
17.
The Gravity Recovery and Interior Laboratory (GRAIL) mission to the Moon utilized an integrated scientific measurement system comprised of flight, ground, mission, and data system elements in order to meet the end-to-end performance required to achieve its scientific objectives. Modeling and simulation efforts were carried out early in the mission that influenced and optimized the design, implementation, and testing of these elements. Because the two prime scientific observables, range between the two spacecraft and range rates between each spacecraft and ground stations, can be affected by the performance of any element of the mission, we treated every element as part of an extended science instrument, a science system. All simulations and modeling took into account the design and configuration of each element to compute the expected performance and error budgets. In the process, scientific requirements were converted to engineering specifications that became the primary drivers for development and testing. Extensive simulations demonstrated that the scientific objectives could in most cases be met with significant margin. Errors are grouped into dynamic or kinematic sources and the largest source of non-gravitational error comes from spacecraft thermal radiation. With all error models included, the baseline solution shows that estimation of the lunar gravity field is robust against both dynamic and kinematic errors and a nominal field of degree 300 or better could be achieved according to the scaled Kaula rule for the Moon. The core signature is more sensitive to modeling errors and can be recovered with a small margin.  相似文献   

18.
Selection of the Mars Science Laboratory Landing Site   总被引:1,自引:0,他引:1  
The selection of Gale crater as the Mars Science Laboratory landing site took over five years, involved broad participation of the science community via five open workshops, and narrowed an initial >50 sites (25 by 20?km) to four finalists (Eberswalde, Gale, Holden and Mawrth) based on science and safety. Engineering constraints important to the selection included: (1)?latitude (±30°) for thermal management of the rover and instruments, (2)?elevation (<?1?km) for sufficient atmosphere to slow the spacecraft, (3)?relief of <100–130?m at baselines of 1–1000?m for control authority and sufficient fuel during powered descent, (4)?slopes of <30° at baselines of 2–5?m for rover stability at touchdown, (5)?moderate rock abundance to avoid impacting the belly pan during touchdown, and (6)?a?radar-reflective, load-bearing, and trafficable surface that is safe for landing and roving and not dominated by fine-grained dust. Science criteria important for the selection include the ability to assess past habitable environments, which include diversity, context, and biosignature (including organics) preservation. Sites were evaluated in detail using targeted data from instruments on all active orbiters, and especially Mars Reconnaissance Orbiter. All of the final four sites have layered sedimentary rocks with spectral evidence for phyllosilicates that clearly address the science objectives of the mission. Sophisticated entry, descent and landing simulations that include detailed information on all of the engineering constraints indicate all of the final four sites are safe for landing. Evaluation of the traversabilty of the landing sites and target “go to” areas outside of the ellipse using slope and material properties information indicates that all are trafficable and “go to” sites can be accessed within the lifetime of the mission. In the final selection, Gale crater was favored over Eberswalde based on its greater diversity and potential habitability.  相似文献   

19.
20.
Understanding transport of thermal and suprathermal particles is a fundamental issue in laboratory, solar-terrestrial, and astrophysical plasmas. For laboratory fusion experiments, confinement of particles and energy is essential for sustaining the plasma long enough to reach burning conditions. For solar wind and magnetospheric plasmas, transport properties determine the spatial and temporal distribution of energetic particles, which can be harmful for spacecraft functioning, as well as the entry of solar wind plasma into the magnetosphere. For astrophysical plasmas, transport properties determine the efficiency of particle acceleration processes and affect observable radiative signatures. In all cases, transport depends on the interaction of thermal and suprathermal particles with the electric and magnetic fluctuations in the plasma. Understanding transport therefore requires us to understand these interactions, which encompass a wide range of scales, from magnetohydrodynamic to kinetic scales, with larger scale structures also having a role. The wealth of transport studies during recent decades has shown the existence of a variety of regimes that differ from the classical quasilinear regime. In this paper we give an overview of nonclassical plasma transport regimes, discussing theoretical approaches to superdiffusive and subdiffusive transport, wave–particle interactions at microscopic kinetic scales, the influence of coherent structures and of avalanching transport, and the results of numerical simulations and experimental data analyses. Applications to laboratory plasmas and space plasmas are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号